Hermanson Laboratory

Senior researcher

Ola Hermanson

Phone: 08-524 874 77
Organizational unit: Department of Neuroscience (Neuro), C4
E-mail: Ola.Hermanson@ki.se

Research focus

We are interested in the development of the brain in health and disease, in particular brain regions involved in social, emotional/affective and cognitive processes. We are specifically interested in molecular mechanisms underlying the regulation of stem cell and progenitor characteristics and differentiation into functional neurons and other cell types. To investigate these topics, we use advanced molecular techniques, including genome-wide analyses of chromatin, and the most relevant cell types, involving translational collaborations with clinicians. Our activities can be divided into three main, overlapping branches:

  1. Transcriptional and epigenetic regulation of stem cell state and fate to generate functional systems for repair of a damaged nervous system, for example after surgery, and increased understanding of psychiatric disease;
  2. Transcriptional and epigenetic regulation of tumor cell and cancer-derived stem cell state and fate, especially in glioma and medulloblastoma;
  3. Biomedical engineering  and studies of microenvironment (see, e.g., Biomaterials, 2007; 2009; 2012) to provide novel approaches for stem and cancer cell biology and clinical applications in regenerative medicine.

We participate actively in several networks of neuroscience, cancer, bioengineering, stem cells, and regenerative medicine. In addition, we are dedicated fans of basic science and are involved in many outreach activities.

Cortical stem cells

Cortical stem cells grown on 3D-substrate generated by recombinant spider silk protein and differentiated into functional astrocytes. Red=GFAP, blue=DAPI. From M. Lewicka, O. Hermanson, A. Rising (2012) Biomaterials 33:7712-17.

Selected publications

A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease.
Bečanović K, Nørremølle A, Neal S, Kay C, Collins J, Arenillas D, et al
Nat. Neurosci. 2015 Jun;18(6):807-16

Neural stem cell differentiation is dictated by distinct actions of nuclear receptor corepressors and histone deacetylases.
Castelo-Branco G, Lilja T, Wallenborg K, Falcão A, Marques S, Gracias A, et al
Stem Cell Reports 2014 Sep;3(3):502-15

CtBPs sense microenvironmental oxygen levels to regulate neural stem cell state.
Dias J, Ilkhanizadeh S, Karaca E, Duckworth J, Lundin V, Rosenfeld M, et al
Cell Rep 2014 Aug;8(3):665-70

NCoR controls glioblastoma tumor cell characteristics.
Heldring N, Nyman U, Lönnerberg P, Onnestam S, Herland A, Holmberg J, et al
Neuro-oncology 2014 Jan;16(2):241-9

The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy.
Füllgrabe J, Lynch-Day M, Heldring N, Li W, Struijk R, Ma Q, et al
Nature 2013 Aug;500(7463):468-71

Group members

Aileen GraciasPhD student
Bianca MiglioriResearch assistant
Giulia GaudenziPhD student
Hannah BruceStudent
Jakub LewickiPhD student
Ola HermansonSenior forskare

Neurosciences