Our research
Papilloma viruses (HPV), hepatitis B- (HBV) and C-viruses (HCV), Epstein-Barr virus (EBV), Kaposi sarcoma virus (KSHV), human T-cell-leukemia virus (HTLV) may contribute to the pathogenesis of as much as 15-20% of all human cancers. A common feature of these oncogenic viruses is their capacity to establish persistent infections that are either asymptomatic or are accompanied by benign cell proliferations. Progression to malignancy is associated with the expression of viral proteins whose primary function is to drive virus replication by regulating cell proliferation, apoptosis and the recognition of infected cells by the immune system. Many of these viral products interfere with the ubiquitin-proteasome system (UPS) that controls protein turnover and trafficking.
Our main virus model is EBV, a lymphotropic herpes virus that is associated with lymphoid and epithelial cell malignancies including Burkitt's lymphoma (BL), nasopharyngeal carcinoma (NPC), immunoblastic lymphoma (IL) and Hodgkin's disease (HD). We study the mechanism by which EBV proteins expressed in malignant cells modify the cellular environment and regulate the interaction of the infected cells with the host immune system.