Our research
Entry into mitosis is regulated by a complex signalling network, converging on activation of mitotic Cyclin-Cdk complexes. To prevent transmission of mutations, this network is strictly controlled by DNA-damage checkpoints. In fact, DNA-damage checkpoint signalling and mitotic entry signalling can both modify each other. Because of these modifications, the decision to enter mitosis is taken differently after recovery from a DNA-damage checkpoint compared to during unperturbed growth.
We focus on two main approaches to study the mitotic entry network and its interplay with DNA-damage checkpoints. First, we investigate the function and regulation of individual proteins involved in these processes. Second, we assemble experimentally derived biophysical models to study how these proteins function together. To support both of these approaches we also focus on developing novel microscopy-based techniques.