Neuroplasticity and Regeneration – Konstantinos Ampatzis group

An amazing feature of the nervous system is its plasticity, the lifelong amazing capacity to constantly change and adapt. This is the focus of our projects aimed at understanding the dynamic mechanisms of the vertebrate neural circuits controlling behavior and tissue regeneration.

Research focus

General illustration of Ampatzis lab's research focus.
The dynamic mechanisms of the vertebrate neural circuits controlling behavior and tissue regeneration. Image: Konstantinos Ampatzis

How do neurons react to changes?

An intriguing feature of the nervous system is its plasticity, the lifelong fantastic capacity to change and adapt in light of internal and external environmental modifications. This is the focus of our projects aimed at understanding this dynamic process of the vertebrate neural circuits controlling behavior. To achieve this goal, we need a thorough understanding of the organization of neural circuits underlying behavior. The overall aim of our research programs is to uncover the principles and functional consequences of plasticity under physiological and pathophysiological conditions.

How do neurons contribute to tissue regeneration?

Humans have a restricted ability to regenerate damaged tissues, such as the spinal cord or the heart. But zebrafish can do it. If part of their nervous system or the heart is damaged, they can heal and repair it in a few weeks. In principle, the regeneration of complex neuronal and non-neuronal tissue requires innervation. Neurons release vital molecules that promote the repair of injured organs and tissues by activating the cell division process. Our aim is to investigate the cellular and molecular mechanisms participating in the regeneration process and how the nervous system guides this process. Our studies represent an example of how the differences between species can be as valuable to medical advancement as the similarities.

To address our scientific questions, we take advantage of the experimental amenability of the genetically and regenerative powerful model system of the adult zebrafish. Our multifaceted approach uses a comprehensive set of state-of-the-art techniques, including functional imaging, electrophysiology, pharmacology, anatomy, molecular neuroscience, genetics, and behavior. Such an effort is critical for the functional dissection of the neuronal classes and understanding their dynamics and impact on health and disease.

General illustration of Ampatzis lab's research focus.
Use of zebrafish to study how neurons drive stem cell activity. Image: Konstantinos Ampatzis.

Publications

Selected publications

Funding

  • Carl Tryggers Foundation (SE)
  • Erik & Edith Fernström Foundation (SE)
  • Längmanska Kulturfonden (SE)
  • Olle Engkvists Foundation (SE)
  • Petrus & Augusta Hedlunds Foundation (SE)
  • Stiftelsen för Gamla Tjänarinnor (SE)
  • STINT - China-Sweden Mobility Programme (SE)
  • StratNeuro (SE)
  • Swedish Brain Foundation (SE)
  • Swedish Research Council - Vetenskapsrådet (SE)
  • NARSAD - Young Investigator Award (US)

Staff and contact

Group leader

All members of the group

Contact and visit us

Postal address

Department of Neuroscience
Attn: Konstantinos Ampatzis
Karolinska Institutet, SE-171 77 Stockholm

Visiting address (visitors, couriers, etc.)

Karolinska Institutet, Biomedicum, 4D
Solnavägen 9, SE-171 65 Solna

Delivery address (goods, parcels, etc.)

Tomtebodavägen 16, SE-171 65 Solna

Karolinska Institutet, Biomedicum, Solnavägen 9