Research group Karin Loré

Research focus

Understanding mechanisms of vaccination

Few medical inventions have affected and saved so many lives as vaccines against infectious diseases. The challenges we are facing today with developing effective vaccines to several of the world’s most serious infectious diseases (HIV-1/AIDS, malaria, tuberculosis) epidemics as well as designing therapeutic vaccines to tumors and/or allergies require a much more intimate understanding of the mechanisms dictating vaccine responses. Our group has had a long term focus on central questions in vaccinology related to how vaccine antigen, adjuvants and viral vaccine vectors influence innate immunity for the induction of strong T cell and B cell responses. A central element in our research is investigating dendritic cells (DCs). They provide the link between the innate response in the periphery and the development of T and B cells responses and their involvement is therefore likely critical to the success of a vaccine.

With a better understanding of how the immune system interacts with vaccines we would be better positioned to select formulations that can elicit stronger immunity, be used at lower doses or with fewer immunizations and are not associated with side effects. We have developed experimental in vitro systems using human primary blood and skin DCs. In addition, we characterize the immune responses in vivo after administration of selected vaccine formulations in animal models. Our strategy is to operate at a powerful infrastructure and leverage our expertise towards a translational research profile aided by our network of strong collaborators and availability to novel reagents and vaccine candidates on a clinical path.

Group members

PhD, Professor, Group leader. +46 (0)73-7121551 or +46 (0)8 46 8 524 87672. Karin did her undergraduate studies in molecular biology and microbiology at Karolinska Institutet. She received her PhD in Immunology in 2001 and thereafter did post doctoral training at the Vaccine Research Center, NIH, Bethesda, MD, USA. She returned to the Karolinska 2006 supported by an Assistant professor salary grant (foass-tjänst) from Vetenskapsrådet. She received her Associate Professorship (Docent) in 2010. From 2011, Karin also holds a visiting scientist position at the Vaccine Research Center, NIH. She was recruited to the Dept of Medicine Solna as a professor in vaccine immunology in 2014.

Liz did her undergraduate studies in biology at Brown University, Providence, RI, USA. She was a Post Baccalaureate Intramural Research Training Award Fellow at the Vaccine Research Center, NIH, and was selected for a KID PhD student funded position to pursue her PhD studies. As of 2013 she is a full time PhD student in our group.

Gustaf recieved his MD from Karolinska Institutet. He is an awardee of funding from the Clinical Scientist Training Programme (CSTP), Karolinska Institutet, to pursue his PhD studies. He has been working with us since 2012. In 2017, Gustaf recevied forskar-AT to split his time between research and the clinic. 

Ang Lin did his undergraduate studies in pharmacy at the Shandong University, China and received his Master’s degree in 2014. He is the recipient of a scholarship from the China Scholarship Council and has performed his PhD studies in our group since 2014.

Sebastian has an engineering degree (civilingenjör) with a Master of Science in Medical Biotechnology from KTH Royal Institute of Technology, Stockholm. He has been working in our group since the summer of 2015. Sebastian was selected for a KID funded PhD position to pursue doctoral studies and has been a PhD student in the group since 2017.

Alberto did his undergraduate studies in biological sciences at the University of Cagliari, Italy and he received his PhD in immunobiology at the Karolinska Institutet in 2009. He further conducted basic and clinical research at the Karolinska University Hospital and at the Children’s hospital Bambino Gesù/University of Rome “Tor Vergata”, Rome, Italy. From 2013 he worked as a research fellow at the Vaccine Research Center, NIAID/NIH, Bethesda, MD, USA. Alberto was recruited to our group as a senior laboratory manager in 2018.

Fredrika Hellgren

Fredrika is a medical student at Karolinska Institutet. She attended KI’s summer research school in 2016 and performed a project with us. Fredrika has since been affiliated with our group and been back in the lab during the school breaks

Projects

Early in vivo events of vaccine-induced immune responses

When evaluating vaccines, it is common practice to focus on the ultimate outcomes - the elicitation of antibodies (abs) and T cell responses and protection from infection. What occurs between the administration of a vaccine (most often an intramuscular injection) and the development of an immune response is not clear. In this project we characterize and compare the early events after administration using well-defined and widely used antigen/adjuvant vaccine formulations in vivo at the site of injection (muscle) and try to define mechanisms as to why some adjuvants stimulate more powerful immune responses than others. In particular we focus on studying the benchmark adjuvant alum compared to oil-in water emulsion adjuvants and selected toll-like receptor ligands. Such data can make a significant contribution to the understanding of how vaccine-induced responses are developed and can be manipulated in order to improve immunity. This information could also help selecting the most suitable adjuvant to a given vaccine. We are also perfroming a similar investigation on the innate responses induced by recombinant adenoviral vaccine vectors after intramusclular injection. The project is sponsored by a Vinnova and EU Marie Curie grant as well as grant from Vetenskapsrådet to Karin Loré. Parts of the project are performed at the Vaccine Research Center, NIH, Bethesda, MD, USA. Main collaborators are NIH investigators Robert Seder, Richard Koup and Nancy Sullivan plus Novartis Vaccines investigators Derek O’hagan and Anja Seubert. 

CD40 targeting as adjuvant for CD8+ T cell responses

The notion of using therapeutic cancer vaccination as a means of treatment has received increased interest over the years. However, a significant challenge is that most vaccines currently available (to infectious diseases) primarily work via elicitation of protective antibodies (Abs) while therapeutic cancer vaccines will need to induce strong cellular immune responses. We have recently found that using an agonistic anti-CD40 Ab (clone 341G2) as a vaccine adjuvant robustly enhanced DC function and induced several fold increase of CD8+ T cell responses. We therefore continue this investigation by focusing on mechanisms by which CD40 targeting can enhance cellular responses and whether there is potential to proceed with such strategy for therapeutic cancer vaccination. Altogether, such data can make a significant contribution to the understanding of how tumor-specific responses can be tailored to be more efficacious and for improving the design of future cancer vaccine formulations. The proposed project aims to both in vivo and an in vitro functionally characterize how CD40 targeting of DCs and other innate immune processes regulate cellular immunity. Main collaborators are Robert Seder, Vaccine Research Center, NIH and Ross Kedl, University of Colorado Denver.

The role of dendritic cells and neutrophils in the induction of vaccine-specific immunity

The project focuses on questions in vaccine development related to specific targeting of 1) protein antigens and 2) adjuvant components to distinct subsets of primary human dendritic cells (DCs), monocytes and neutrophils in order to improve antigen delivery and activation of such cells for the induction of strong adaptive immunity. DCs are essential for stimulation of primary antigen-specific CD4+ T helper cells which in turn are critical for regulating both cellular and humoral immune responses. However, as our in vivo data show that neutrophils are the most abundant cell type that is recruited to the site of vaccine injection, this project is also focused on whether these cells have an important role in the generation of vaccine responses. Understanding the functional patterns of the various innate immune subtypes and and activation signals to optimize vaccine-induced responses is central. An important originality of our studies is that we use physiologically relevant systems including freshly isolated cell subsets from human blood and skin and not in vitro-derived surrogates. This project is sponsored by research grants from Vetenskapsrådet as well as the Swedish Society of Medicine to Karin Loré. Main collaborators are Professor Anna Norrby-Teglund and Assistant professor Anna Smed Sörensen, KI.

Approaches to enhance and broaden B cell responses against HIV-1 Env

The main goal of this proposal is to design and evaluate improved HIV-1 envelope glycoprotein (Env) immunogens to enhance and broaden B cell responses and neutralizing antibodies against HIV-1. We will investigate the impact of the high affinity interaction between Env and primate CD4, which may compromise exposure of the conserved CD4 binding site during vaccination. Since CD4 is a signaling receptor, Env interactions with CD4-expressing primary cells during immunization may affect the function of such cells and this will be addressed. To meet these goals CD4-binding defective soluble Env trimers will be generated and evaluated in vitro and in vivo. We will use new methodology to investigate the evolution of Env-specific memory B cell and plasma cell responses in non-human primates to gain new insights into the quality of B cell responses elicited by state-of-the-art Env immunogens. This project is sponsored by a grant from Swedish International Development Cooperation Agency (SIDA) to Associate Professor Gunilla Karlsson-Hedestam, MTC/KI and Karin Loré. Main collaborators are Gunilla Karlsson-Hedestam and and Investigators Richard T. Wyatt, Scripps Research Institute, IAVI, La Jolla, CA and John Mascola, Vaccine Research Center, NIH, Bethesda, MD.

Defects in human dendritic cell subsets during HIV-1 infection

The ultimate question to be addressed in this study is whether dendritic cells (DCs), which are central in their function to regulate immune responses, are depleted and/or dysfunctional in HIV-1+ individuals. Specifically, we are studying recruitment in situ of distinct human DC subsets to the skin shortly after intradermal antigen exposure. As a model to examine the functional pattern of DCs in a local immune response in the skin, we are utilizing skin punch biopsies taken after PPD (purified protein derivate) or saline injections in clinically well-defined healthy seronegative and HIV-1+ cohorts with documented positive PPD reactions.   

Specific questions are:

  • Do various DC subsets infiltrate the skin after PPD delivery?
  • Are there marked differences between HIV-1+ and healthy individuals in terms of magnitude of recruitment and phenotypes of DCs in the skin after PPD injection? 
  • Are DC-related effector functions e.g. production of pro-inflammatory cytokines and IFN-a in response to PPD injection deficient in HIV-1 infection?  

This project is sponsored by a grant from Läkare mot AIDS forskningsfond to Karin Loré. Main collaborators are Professor Jan Andersson, KI and Professor Robert J. Wilkinson, Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa and MRC National Institute for Medical Research and, Imperial College, London, UK.


Selected Publications

Induction of Robust B Cell Responses after Influenza mRNA Vaccination Is Accompanied by Circulating Hemagglutinin-Specific ICOS+ PD-1+ CXCR3+ T Follicular Helper Cells.
Lindgren G, Ols S, Liang F, Thompson E, Lin A, Hellgren F, et al
Front Immunol 2017 ;8():1539

Rhesus Macaque Myeloid-Derived Suppressor Cells Demonstrate T Cell Inhibitory Functions and Are Transiently Increased after Vaccination.
Lin A, Liang F, Thompson E, Vono M, Ols S, Lindgren G, et al
J. Immunol. 2018 01;200(1):286-294

Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques.
Liang F, Lindgren G, Lin A, Thompson E, Ols S, Röhss J, et al
Mol. Ther. 2017 Dec;25(12):2635-2647

Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake.
Liang F, Lindgren G, Sandgren K, Thompson E, Francica J, Seubert A, et al
Sci Transl Med 2017 06;9(393):

Neutrophils acquire the capacity for antigen presentation to memory CD4 T cells in vitro and ex vivo.
Vono M, Lin A, Norrby-Teglund A, Koup R, Liang F, Loré K
Blood 2017 04;129(14):1991-2001

Dissociation of skeletal muscle for flow cytometric characterization of immune cells in macaques.
Liang F, Ploquin A, Hernández J, Fausther-Bovendo H, Lindgren G, Stanley D, et al
J. Immunol. Methods 2015 Oct;425():69-78

Human Anti-CD40 Antibody and Poly IC:LC Adjuvant Combination Induces Potent T Cell Responses in the Lung of Nonhuman Primates.
Thompson E, Liang F, Lindgren G, Sandgren K, Quinn K, Darrah P, et al
J. Immunol. 2015 Aug;195(3):1015-24

Plasmacytoid dendritic cells infiltrate the skin in positive tuberculin skin test indurations.
Bond E, Liang F, Sandgren K, Smed-Sörensen A, Bergman P, Brighenti S, et al
J. Invest. Dermatol. 2012 Jan;132(1):114-23

Attenuation of CD4+ T-cell function by human adenovirus type 35 is mediated by the knob protein.
Adams W, Berenson R, Karlsson Hedestam G, Lieber A, Koup R, Loré K
J. Gen. Virol. 2012 Jun;93(Pt 6):1339-44

Adenovirus type-35 vectors block human CD4+ T-cell activation via CD46 ligation.
Adams W, Gujer C, McInerney G, Gall J, Petrovas C, Karlsson Hedestam G, et al
Proc. Natl. Acad. Sci. U.S.A. 2011 May;108(18):7499-504

Soluble HIV-1 Env trimers in adjuvant elicit potent and diverse functional B cell responses in primates.
Sundling C, Forsell M, O'Dell S, Feng Y, Chakrabarti B, Rao S, et al
J. Exp. Med. 2010 Aug;207(9):2003-17

Novel adjuvants for B cell immune responses.
Loré K, Karlsson Hedestam G
Curr Opin HIV AIDS 2009 Sep;4(5):441-6

Human B cell responses to TLR ligands are differentially modulated by myeloid and plasmacytoid dendritic cells.
Douagi I, Gujer C, Sundling C, Adams W, Smed-Sörensen A, Seder R, et al
J. Immunol. 2009 Feb;182(4):1991-2001

All publications for Karin Loré at PubMed

Open positions and thesis projects

We are always interested to get in touch with talented po­tential co-workers. If you are interested in doing research within our group, as a post-doc, PhD student or degree project student, please contact the group leader Karin Loré, Karin.lore@ki.se.

Open position: Postdoctoral Researcher in immunology/vaccinology

Alumni

Alumni groupmembers

Kerrie Sandgren, PhD Postdoctoral fellow

Kerrie did her undergraduate studies in microbiology and immunology at the University of South of Wales, Sidney, Australia and received her PhD from there in 2008. She joined our group in 2009. Kerrie was the recipient of a postdoctoral fellowship from the Swedish Society of Medical Research (SSMF). She is now a research fellow at the Centre for Virus Research, Westmead Millennium Institute Sidney, Australia

Maria Vono, PhD, Post doctoral fellow

Maria did her undergraduate studies in industrial biotechnology at the University of Padova, Italy. Maria was selected for a scholarship to pursue her PhD studies within Novoartis Vaccines PhD Academy, Siena and received her PhD in 2014. She thereafter joined our group as a post doctoral fellow supported by postdoctoral scholorships from the Blanceflor Foundation and the Swedish Society of medicine. Maria is now a researcher at Dept of Pathology & Immunology, University of Geneva - WHO collaborating Center for Neonatal Vaccinology.

Frank Liang, PhD student

Frank received a Master of Medical Science in Biomedicine from Karolinska Institutet in 2009. He was a recipient of KID PhD student funding and was a PhD student in our group since 2010. Frank was performing a part of his PhD project at the Vaccine Research  Centre, NIH, Bethesda, MD, USA. Frank graduated 2015 and is now a post doc at Gothenberg University.

Will Adams, PhD student

Will did his undergraduate studies in biology at Bates College, Lewiston, ME, before he became a PhD student in our group. He received his PhD in 2011, did a post doc at Columbia University, NY and is currently a program officer at Malaria Vaccine Initiative - PATH.

Cornelia Gujer, PhD student

Cornelia did her undergraduate studies in biology in Switzerland before she became a PhD student in our group. She received her PhD in 2011 and is currently a researcher at the Institute of Experimental Immunology – Viral Immunology, University of Zurich.

Emily Bond, PhD student

Emily went to medical school at Linköping University, Linköping, Sweden, received her medical license as a physician in 2006 and thereafter worked with her PhD studies in our group. She received her PhD in 2012.   

Affiliated group member

Tyler did his undergraduate studies in biology at North Park University, Chicago, USA. He has Master's degree in immunology and infection biology from Uppsala University and did his Master's thesis in our group. Tyler is now a PhD student at Karolinska Institutet whit Karin Loré as the co-supervisor.

Team

Team Taras Kreslavskiy