Research areas
Midbrain dopaminergic neuron development
- Characterizing the molecular cascades that regulate midbrain stem cell behavior as well as dopaminergic neurogenesis, differentiation and subtype specification.
- The functions of Wnts, their receptors and their signaling pathways, with focus on new components of the Wnt/PCP signaling.
- The function of nuclear receptors and their ligands in midbrain dopaminergic neuron development.
- The identification of novel factors by single cell transcriptomic, proteomic and lipidomic approaches.
- Control of midbrain dopaminergic neurogenesis by basic-helix-loop-helix transcription factors.
Stem cells and direct reprogramming for Parkinson’s disease (PD) cell replacement therapy and drug discovery
- Improving protocols for the efficient differentiation of human stem cells (NES, ES, and iPS cells) into substantia nigra A9 dopaminergic neurons for cell replacement therapy and drug discovery.
- Develop 2D and 3D in vitro models of midbrain tissue for PD drug discovery using human NES/ES/iPS cells with PD mutations and isogenic controls.
- Examine the role of Wnt signaling in the pathogenesis of Parkinson’s disease.
- Improve protocols for the direct in vitro reprogramming of somatic cells into substantia nigra A9 dopaminergic neurons.
- Develop a novel cell replacement therapy for PD based on the direct in vivo reprogramming of striatal astrocytes in situ, into functional A9 dopaminergic neurons.
Post-doctoral positions
Please, send your inquiries by e-mail to ernest.arenas@ki.se and include the following information:
- CV with publications and research experience
- A brief outline of research interests