Christian Riedel group

Aging and age-related diseases are central to human health; we study the molecular mechanisms that regulate aging and hope to exploit them for therapeutic purposes.

Our health and longevity is largely determined by the rate at which we age. Fortunately, aging is a plastic process. In our research group we use the nematode Caenorhabditis Elegans as a model systems to understand the pathways that can accelerate or impair aging. C. Elegans is ideal for aging-related research, as it is technically well established, short-lived (allowing for lifespan as an easily measurable phenotype), and very responsive to alterations in its aging-regulatory pathways.

These studies are complemented by efforts in human tissue culture, to verify human conservation and further explore our findings for therapeutic purposes. Our research combines biochemistry (Proteomics, ChIP-Seq,…) with high-throughput genetic screening approaches (RNAi), to understand the regulation of aging at molecular and mechanistic resolution.


Christian G. Riedel, PhD, Group Leader, e-mail:
Phone: +46-736707008

Ilke Sen, MSc, PhD Student, e-mail:


Xin-Xuan Lin, MSc, PhD Student, e-mail:


 Bora Baskaner, BSc, Technician, e-mail:


Naghmeh Rajaei, Postdoc, e-mail:


Marco Lezzerini, PhD, Postdoc, email:


Georges Janssens, PhD, Postdoc, email:


Xin Zhou, PhD, Postdoc, email:

Mengshan Liu, Master Student
Simone Brandenburg, Research Assistant
Nataly Puerta Cavanzo, Master Student
Marlies Oomen, Master Student
Irem Yücel, Bachelor Student
Tanja Iken, Bachelor Student


The role of DAF-16/FOXO and its cofactors in aging regulation

A current focus of ours is the mechanistic exploration of aging regulatory transcription factors, in particular DAF-16/FOXO – a central driver of longevity that integrates many lifespan extending stimuli, i.e. nutrient deprivation, various stresses, or cues of infertility to confer transcription of a wide range of stress resistance and longevity determining genes. We recently identified a variety of co-factors to DAF-16/FOXO, and now we are exploring their mechanistic role.


The role of the chromatin landscape in aging regulation

Transcription is not only controlled by transcription factors but also the chromatin landscape that they interact with. Hence we are complementing our work by studies on the role of chromatin states, chromatin remodelers and the epigenome in the context of aging and age-related disease.


Further reading:

Riedel, C.G. et al. (2013) DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nature Cell Biology, 15, 491-501.

Kenyon, C. (2010) The genetics of ageing. Nature 464, 504-12.

Calnan, D.R. & Brunet, A. (2008) The FoxO code. Oncogene 27, 2276-88.

ICMC / Financial support

Christian Riedel’s group is located at and financially supported by the Integrated Cardio Metabolic Center (ICMC) at Karolinska Institutet. The ICMC has recently been established as a research collaboration between Karolinska Institutet and the pharmaceutical company AstraZeneca to address a variety of strategic research areas in the fields of cardiovascular and metabolic diseases.

Selected publications

The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity.
Heimbucher T, Liu Z, Bossard C, McCloskey R, Carrano A, Riedel C, et al
Cell Metab. 2015 Jul;22(1):151-63

DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity.
Riedel C, Dowen R, Lourenco G, Kirienko N, Heimbucher T, West J, et al
Nat. Cell Biol. 2013 May;15(5):491-501

The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification.
Zhang C, Montgomery T, Fischer S, Garcia S, Riedel C, Fahlgren N, et al
Curr. Biol. 2012 May;22(10):881-90

The Caenorhabditis elegans SOMI-1 zinc finger protein and SWI/SNF promote regulation of development by the mir-84 microRNA.
Hayes G, Riedel C, Ruvkun G
Genes Dev. 2011 Oct;25(19):2079-92

The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO.
Rizki G, Iwata T, Li J, Riedel C, Picard C, Jan M, et al
PLoS Genet. 2011 Sep;7(9):e1002235

Toward the mechanisms preventing merotelic kinetochore-microtubule attachments.
Riedel C
Cell Cycle 2010 Oct;9(20):4048-9

A soma-to-germline transformation in long-lived Caenorhabditis elegans mutants.
Curran S, Wu X, Riedel C, Ruvkun G
Nature 2009 Jun;459(7250):1079-84

The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation.
Gregan J, Riedel C, Pidoux A, Katou Y, Rumpf C, Schleiffer A, et al
Curr. Biol. 2007 Jul;17(14):1190-200

Tandem affinity purification of functional TAP-tagged proteins from human cells.
Gregan J, Riedel C, Petronczki M, Cipak L, Rumpf C, Poser I, et al
Nat Protoc 2007 ;2(5):1145-51

Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I.
Riedel C, Katis V, Katou Y, Mori S, Itoh T, Helmhart W, et al
Nature 2006 May;441(7089):53-61

Is chromatin remodeling required to build sister-chromatid cohesion?
Riedel C, Gregan J, Gruber S, Nasmyth K
Trends Biochem. Sci. 2004 Aug;29(8):389-92