Rongrong Fan

Rongrong Fan

Senior Forskare | Docent

Rongrong Fan, PhD Docent i cell- och molekylärbiologi Forskargruppsledare&#160

Laboratoriet för molekylär endokrinologi Institutionen för medicin, Huddinge (MedH) Karolinska Institutet

E-postadress: rongrong.fan@ki.se
Besöksadress: Blickagången 16, 14152 Flemingsberg
Postadress: H7 Medicin, Huddinge, H7 GUT Fan, 171 77 Stockholm
Del av:

Om mig

  • Fan Laboratory of Molecular Endocrinology (www.fanlab-ki.com) verkar i skärningspunkten mellan klinisk fenotypning och funktionell genomik. Vår målsättning är att dechiffrera den epigenetiska programmeringen bakom metabol hälsa och sjukdom. Vi strävar efter att förstå hur miljöfaktorer och nutritionella signaler fysiskt omformar kromatinlandskapet och därigenom driver utvecklingen av metabola sjukdomar såsom typ 2-diabetes (T2D), fettleversjukdom (MASLD) och hjärt-kärlsjukdomar (CVD).

Forskningsbeskrivning

  • Vår forskning tillämpar en "bench-to-bedside"-strategi, där vi integrerar multi-omics-data från patientkohorter med precis molekylärbiologi för att lösa två stora utmaningar inom metabol medicin:

    1. Kartläggning av kretslopp för transkriptionsfaktorer och coregulatorer: Vi fokuserar på hur transkriptionsfaktorer och coregulatorer fungerar som molekylära strömbrytare i metabola vävnader. Vår forskning har visat att dysreglering av centrala coregulatorer (såsom GPS2) utlöser en "dubbelstöt" av systemisk inflammation och störd lipid- och kolesterolmetabolism, vilket accelererar progressionen av typ 2-diabetes, MASLD och hjärt-kärlsjukdomar.
    2. Avkodning av funktionella epigenetiska koder: Min forskning utforskar genomets "mörka materia" – de distala enhancers och silencers som orkestrerar vävnadsspecifika responser. Vi strävar efter att avkoda den specifika epigenetiska grammatik som gör det möjligt för näringssignaler att skifta distala enhancers från ett latent till ett aktivt stadium, eller omvänt, hur metabol stress rekryterar silencers för att stänga ner skyddande metabola signalvägar. Genom att kartlägga och förstå dessa distala regulatoriska element blottlägger vi ett dolt lager i genomet som dikterar hur en individs lever svarar på metabol belastning.

    Metodologi

    Vi använder en sofistikerad "Multi-OMICs"-verktygslåda för att överbrygga gapet mellan genotyp och fenotyp:

    • Transkriptomik & Cistromik: Kartläggning av regulatoriska nätverk i lever och fettvävnad.
    • Avancerad epigenetik: Användning av ultrakänslig ChIP-seq och "padlock probe"-teknologi för detektion av cellfritt DNA (cfDNA) i låga koncentrationer.
    • Klinisk integration: Aktivt samarbete med kliniska biobanker (t.ex. KaLiB) vid Campus Flemingsberg/Karolinska Universitetssjukhuset för att säkerställa att våra molekylära fynd har direkt relevans för patientpopulationen i Region Stockholm.

    Vi tackar tacksammast för det generösa forskningsstöd till våra pågående projekt som erhållits från Vetenskapsrådet, Cancerfonden, Novo Nordisk Fonden, European Foundation for the Study of Diabetes, SRP Diabetes samt många andra anslagsgivare.

     

Undervisning

    • Huvudhandledare för 4 pågående doktorander och 1 postdoktor.
    • Bihandledare för 1 pågående doktorand och 2 disputerade doktorander.
    • Suttit i betygsnämnd, varit opponent eller deltagit vid halvtidsseminarier för fler än 20 doktorander.
    • Handledare för 5 kandidatstudenter och 2 masterstudenter.
    • Omfattande undervisningserfarenhet med över 200 timmar på kandidat-, master- och forskarnivå.
    • Kursansvarig (Course Director) på masternivå.
    • Högskolepedagogisk utbildning.

Artiklar

Alla övriga publikationer

Forskningsbidrag

  • Swedish Research Council
    1 January 2024 - 31 December 2026
    Over-nutrition and inflammation induce transcriptional alterations linked with non-alcoholic fatty liver diseases (NAFLD). Such pathological changes are tightly controlled by chromatin remodeling events, particularly at non-coding genomic regions in the liver cells. Those tissue-specific regions are enriched with SNPs but their function and regulation remain largely unknown. The widely used strategies to map active chromatin landscape with epigenetic markers, which have not even been widely applied to human cohorts, are questioned most recently. Studies by us and others have shown that genomic regions featured with active epigenetic markers, and previously clustered as ‘super enhancers’, are not always functionally identical. Many of them are either inactive or repressive (silencers). The molecular traits to differentiate the ‘true’ functional enhancers and silencers are unknown, which halts the efforts for deciphering the true roles of genetic risk factors in NAFLD.The OBJECTIVE of my proposal is to characterize NAFLD/NASH-relevant functional epigenetics and to test proof-of-concept enhancer targeting treatment strategies. We plan to combine molecular techniques and human cohorts to achieve three major AIMs: To identify monocyte and liver epigenetic signatures in NAFLD/NASH cohort.To investigate the functionality of the epigenetic regions in human liver cells.To therapeutically target liver enhancers using tissue-specific oligonucleotides.
  • Swedish Cancer Society
    1 January 2024
    Liver cancer is dangerous. It is difficult to treat and is even resistant to the latest immunotherapy. When liver cancer progresses to advanced stages, the patient's 5-year survival rate is very low. It is therefore important to understand why liver cancer is difficult to eliminate and what helps cancer cells escape our immune surveillance. Such knowledge will be extremely important for researchers to develop new treatments and improve clinical outcomes for liver cancer therapy. Liver cancer is difficult to treat and is resistant to the latest immunotherapy. An important reason is that liver cancer tumors are enriched with macrophages. These macrophages suppress immune responses and stop the immune system from clearing the cancer cells. We plan to study an enzyme called KDM1A in tumor macrophages. When this enzyme is absent from the macrophages, they become more inflamed. We want to test whether macrophages lacking KDM1A will help alleviate liver cancer progression and strengthen immunotherapy. We also want to test a new substance that can break down KDM1A. We want to see if this new compound can treat liver cancer. With this project, we hope to find out if removing an epigenetic enzyme called KDM1A in the macrophages will help our immune system fight liver cancer. We also want to evaluate the potential therapeutic effects of a new compound that can degrade KDM1A. We want to find out if this compound can be a good drug for the treatment of liver cancer.
  • From epigenetics to functional epigenetics: investigating enhancers and silencers in human metabolic tissues
    Novo Nordisk Foundation
    1 January 2022 - 31 December 2026
  • Swedish Cancer Society
    1 January 2021
    Obesity increases both the risk and mortality of liver cancer. The development of obesity-induced liver cancer is usually initiated with lipid accumulation in the liver and is followed by liver inflammation, liver fibrosis, cirrhosis and then cancer. It is unclear how this process unfolds at the molecular level. Recent advances in DNA technology enable deep investigation of disease progression at the chromatin level. We therefore plan to investigate chromatin regulatory events in both liver hepatocytes and macrophages to understand the driving mechanisms for causing liver cancer in obesity. This study investigates the molecular mechanisms of how obesity triggers liver cancer. It is now clear that both liver lipid dysregulation and liver inflammation contribute to the development of the disease. We therefore plan to investigate the chromatin remodeling events that define progression during NAFLD liver cancer transformation in the hope of identifying novel mechanisms involved in disease progression. We expect to explain how obesity drives liver cancer at the deep-rooted DNA level, which is required to develop intervention strategies. We hope to validate the function of the many NASH fibrosis-related candidates we have identified so far through data mining in human liver disease patients in mouse models. We will continue to explore the new candidates, both drug-targeted proteins and disease-relevant chromatin regions associated with NAFLD liver cancer development using high-throughput objective screening techniques. With all these efforts, we hope to identify major mechanisms that drive the obesity and liver cancer process, which is valuable for understanding the disease for both diagnosis and drug development.
  • Epigenomic medicine in type 2 diabetes and atherosclerosis: targeting macrophage enhancers
    Novo Nordisk Foundation
    1 January 2020 - 31 December 2022

Anställningar

  • Senior Forskare, Medicin, Huddinge, Karolinska Institutet, 2024-

Examina och utbildning

  • Docent, Cell- och molekylärbiologi, Karolinska Institutet, 2022

Nyheter från KI

Kalenderhändelser från KI