Gonçalo Castelo-Branco

Gonçalo Castelo-Branco

Professor
Telefon: +46852487936
Besöksadress: Solnavägen 9, 6C, 17177 Stockholm
Postadress: C2 Medicinsk biokemi och biofysik, C2 Molekylär neurobiologi Castelo-Branco, 171 77 Stockholm

Om mig

  • Professor i gliacellsbiologi vid institutionen för medicinsk biokemi och biofysik

    Gonçalo Castelo Branco är född i Cantanhede, Portugal, 1976. Han är utbildad i biokemi vid University of Coimbra med examen 1999 och disputerade vid KI 2005. Han gjorde postdocs vid KI 2005-2008 och vid Gurdon Institute, Storbritannien, 2009-2012.

    Castelo Branco återvände till KI och började bygga upp en forskargrupp 2012. Han blev docent 2016. 2019 belönades han med Svenska Sällskapet för Medicinsk Forskning Jubileumspriset och 2021 med både Göran Gustafssonpriset i medicin och Eric K Fernströms pris för unga, särskilt lovande och framgångsrika forskare. Gonçalo Castelo Branco har anställts som professor i gliacellsbiologi vid Karolinska Institutet från 1 november 2021.

Forskningsbeskrivning

  • Vår forskargrupp är intresserad av de molekylära mekanismer som definierar den epigenetiska tillstånd av stam/progenitorceller, såsom pluripotenta celler och oligodendrocytprekursorceller. Vi är särskilt fokuserade på hur samspelet mellan transkriptionsfaktorer , icke -kodande RNA och kromatin modifierande enzymer bidrar till övergången mellan epigenetiska tillstånd i oligodendrocytprekursorceller, och kunde på så sätt leda till terapier för sjukdomar som multipel skleros .

Utvalda publikationer

Artiklar

Alla övriga publikationer

Forskningsbidrag

  • Swedish Research Council
    1 October 2025 - 31 March 2026
    Spatial omics is a cutting edge field that enables unprecedented high-resolution mapping of molecular features, such as RNA, proteins, and metabolites, directly within intact tissues. These technologies are transforming how we study biology and disease by revealing the spatial organization of cell states and tissue architecture. Sweden has played a leading role in the development of spatial omics, including key technologies such as spatial transcriptomics, in situ sequencing, multiplexed imaging, among others. Building on this foundation, we propose a planning grant to prepare a national Cluster of Excellence in Spatial Omics that bridges fundamental technology development with biomedical and clinical applications.The planning initiative brings together researchers from KI, KTH, and Stockholm University, representing expertise in molecular biology, engineering, data science, life sciences and translational medicine. During the six-month planning period, we will organize workshops and coordination meetings between these researchers and the wider life sciences community to brainstorm and identify scientific priorities and milestones, define collaborative structures, including a research school, and ensure alignment with clinical, infrastructural, and societal needs. The outcome will be a roadmap for a full cluster proposal and a long-term strategy to foster Swedish leadership in this transformative field.
  • KAW Scholar
    Knut and Alice Wallenberg stiftelse
    1 September 2024 - 31 August 2029
  • Swedish Research Council
    1 January 2024 - 31 December 2031
    Multiple sclerosis (MS) is a neurological disease characterized by autoimmune attack in the central nervous system, targeting oligodendroglia (OLG), and their myelin, which ensheaths neuronal axons. Environment factors and genetic susceptibility play important roles in the etiology of MS. Immune genes harbors MS risk single nucleotide polymorphisms (SNPs)/variants. Thus, genetic predisposition affecting the adaptive immune system is currently thought to be involved in MS. Despite the extraordinary progress in immune-based therapies for MS, these have limited efficacy in the progression of MS. While OLG are mostly considered as mere passive targets in MS, our research indicates that OLG might have an active role in MS and that risk SNPs/variants might contribute to MS by affecting OLG biology. My research group aims to investigate  the role of OLG in disease etiology and progression in MS. We aim to perform detailed single-cell and spatial mapping of the transcriptomic and epigenomic landscapes of OLG in MS. We will assess functional roles of OLG in MS etiology and progression, by developing humanized models to study OLG biology in neuroinflammation, and by performing functional analysis of candidate MS-risk SNPs in OLG. Combining single-cell/spatial omics, genome-editing and functional assays in humanized mice models of MS will lead to unique insights on the role of OLG and SNPs in MS etiology and progression, and advances in the discovery of novel targets for MS therapies.
  • ERC Advanced Grant
    European Research Council
    1 January 2024 - 31 December 2028
  • European Research Council
    1 January 2024 - 31 December 2028
    Multiple sclerosis (MS) is a neurological disease characterized by autoimmune attack targeting oligodendroglia (OLG) in the central nervous system (CNS), and in particular their myelin, which ensheaths neuronal axons. Genome-wide association studies (GWAS) have led to the identification of hundreds of single-nucleotide polymorphisms (SNPs) and variants that are associated with MS risk. Many of these are located near genes associated with immune cells, indicating a key role for these cells in MS. Using single-cell omics approaches, we recently found that OLG present chromatin accessibility or express genes associated with some of these SNPs/variants, both in health and disease. Here, we hypothesize that OLG have a more active role in MS than previously anticipated, and therefore we will determine the function of MS SNPs/variants in OLG in the context of MS, using humanized mouse models, patient samples and new single-cell omics techniques recently developed in my group. We will 1) characterize in-depth the transcriptomic and epigenomic landscape of human and mouse OLG in the context of MS, to identify putative genes affected by the SNPs/variants
    2) perform CRISPR-guided editing of a cohort of the identified SNPs/variants in human OLG, and determine the consequences of the editing at a) an epigenomic and transcriptional level, linking specific SNPs/variants to their bona-fide target genes, and b) a functional level, by performing an array of functional assays targeting myelination, cell survival, and immune function, both in vitro and in humanized mouse chimeras in which engineered human OLG have been transplanted. We will use single-cell and spatial omics technologies, such as nanoCUT&Tag and spatial CUT&Tag, among others which we have recently developed in my research group. The results of this project will yield unique insights into the role of OLG and the identified SNPs/variants in MS, and thereby pave the way to novel therapeutic avenues for this disease.
  • Swedish Research Council
    1 January 2020 - 31 December 2024
  • Swedish Research Council
    1 January 2016 - 31 December 2019

Anställningar

  • Professor, Medicinsk biokemi och biofysik, Karolinska Institutet, 2021-

Examina och utbildning

  • Docent, Neurobiologi, Karolinska Institutet, 2016
  • FILOSOFIE DOKTOR, Institutionen för medicinsk biokemi och biofysik, Karolinska Institutet, 2005

Uppdrag

  • Administrativ chef, Deputy Head of Department, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 2024-
  • Administrativ chef, Chair of Senate, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 2024-

Uppdrag i kommitté

  • Medlem, Nobelförsamlingen vid Karolinska Institutet, Karolinska Institutet, 2023-

Nyheter från KI

Kalenderhändelser från KI

Nyheter från externa medier