Onur Dagliyan

Onur Dagliyan

Biträdande Lektor
E-postadress: onur.dagliyan@ki.se
Besöksadress: Solnavägen 9, 17177 Stockholm
Postadress: C2 Medicinsk biokemi och biofysik, C2 Molekylär neurobiologi Dagliyan, 171 77 Stockholm

Om mig

  • Vår forskargrupp är intresserad av de molekylära mekanismer genom vilka erfarenheter påverkar dynamiken i neuronala kretsar i mushjärnan. Vi studerar detta ämne genom att bygga nya molekylära teknologier som möjliggör visualisering och kontroll av proteinaktivitet in vivo.

Forskningsbeskrivning

  • synaptisk plasticitet, proteinteknik, optogenetik, biosensorer, inlärning och minne.

Undervisning

  • Jag undervisar i biokemi, neurobiologi, metabolism, DNA/RNA/proteinstruktur och dynamik.

Artiklar

Alla övriga publikationer

Forskningsbidrag

  • European Research Council
    1 May 2023 - 30 April 2028
    Protein signaling in cells is precisely coordinated in space and time. Molecular chemogenetics, optogenetics, and biosensors have generated a scientific revolution enabling the spatiotemporal codes of protein signaling in single cells. However, it is a great challenge to study protein dynamics in a physiological multicellular environment due to the extensive variability in protein signaling within individual cells, as well as the sparsity of driver cells responsible for a specific physiological process. To build causal relationships between proteins and multi-cellular behavior, we will develop broadly applicable technologies by engineering proteins enabling the control of target proteins with light, exclusively in the relevant driver cell subpopulations. These approaches can be used in any biological field in which protein signaling is critical for multi-cellular behavior, but here we will focus on three different stages of a challenging neurobiology process. Upon sensory experience, for example, by learning a new task, only the subsets of neurons within a corresponding brain region switch to the active state. It is largely unknown how proteins that are activated in these sparsely activated neuronal circuits operate in space and time. Our technologies will enlighten the spatiotemporal dynamics of proteins in active neuron subpopulations responding to certain learning tasks in mice. Understanding such learning neuronal circuit responses at the molecular level will pave the way to develop new therapeutic approaches for brain disorders including epilepsy, depression, and autism spectrum disorders.
  • Swedish Research Council
    1 January 2022 - 31 December 2025
  • Swedish Society for Medical Research

Anställningar

  • Research Fellow, Neurobiology, Department of Neurobiology, Harvard Medical School, 2016-
  • Biträdande Lektor, Medicinsk biokemi och biofysik, Karolinska Institutet, 2022-2028

Nyheter från KI

Kalenderhändelser från KI