Felipe de Oliveira Galvão

Felipe de Oliveira Galvão

Research Specialist
Visiting address: Nobels väg 13, 17177 Stockholm
Postal address: C6 Institutet för miljömedicin, C6 Biokemisk toxikologi Dreij, 171 77 Stockholm

About me

  • I received my M.Sc. degree in Biochemistry in 2011 and a Ph.D. in Biochemistry and Molecular Biology in 2016 from Professor Silvia Batistuzzo’s group, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil. In 2015 I was awarded with a Ph.D. visiting fellowship at the Unit of Biochemical Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, Sweden. In 2018, I joined Professor Kristian Dreij’s group for a postdoc focusing on Genetic Toxicology, and in 2023 I got a position as Research Specialist at IMM.

    I have experience in Genetic Toxicology and Environmental Mutagenesis with emphasis on particulate matter sampling, physical-chemical characterization, air pollutants dispersion modeling, and analysis of in vitro and in vivo effects of air pollutants. The focus of my research is to assess the impact of complex mixtures emitted by biomass burning in both an occupational and environmental exposure scenario.

Research

  • Development of new approach methodologies for assessing cancer risks associated with air pollution mixtures

     

  • Air pollution is a complex mixture of compounds with different biological activities that makes risk assessment a challenge. Current strategies for cancer risk assessment (CRA) of air pollution are today based on a pollutant-by-pollutant approach. This is a great simplification and excludes the possibility of mixture effects that may underestimate actual human health risks. The aim of this project is to address these issues by developing a New Approach Method (NAM) for CRA of air pollution mixtures. We propose that CRA of complex mixtures should be based on in vitro toxicity testing of whole mixtures and determination of relative Mixture Potency Factors (MPFs) (Toxicology 2014). We have previously shown that this approach can accurately determine the genotoxic potency of individual air pollutants (Environ Sci Technol 2017). Using this NAM, we aim to show that CRA of air pollution based on in vitro MPFs better predict the lung cancer risk associated with exposure to ambient air PM than currently accepted component-based approaches. We are now applying this NAM with samples representing different emission sources and environments (Environ Int 2022, Environ Int 2024). This project is funded by the Swedish Research Council FORMAS, STINT/CAPES, and Karolinska Institutet. PI: Kristian Dreij

     

  • Assessment of acute respiratory and cardiovascular health effects due to biomass smoke exposure in the Brazilian Amazon

     

  • Biomass burning is a global concern in terms of climate change, biodiversity, and health risks. Worldwide, approximately 3 billion people are exposed to biomass particulate matter (PM). Biomarkers of exposure and effect are fundamental for understanding environmental exposures, mechanistic pathways, and monitoring early adverse outcomes. Our goal is to assess the acute cardiopulmonary health effects of short-term exposure to biomass PM among the population in the Amazon deforestation arc, together with in vitro analyses of sampled PM in a lung cell model to provide a mechanistic characterization of the health hazard. This project will be the first of its kind to combine personal exposure monitoring, specific cardiopulmonary biomarkers, and functional testing with mechanistic in vitro studies of collected PM in the Amazon. This project is funded by the Swedish Research Council FORMAS and Karolinska Institutet. PI: Felipe de Oliveira Galvão

Articles

All other publications

Grants

News from KI

Events from KI