Katja Petzold
Senior Forskare | Docent
E-postadress: katja.petzold@ki.se
Telefon: +46852487647
Besöksadress: Solnavägen 9, 9B, 17177 Stockholm
Postadress: C2 Medicinsk biokemi och biofysik, C2 Molekylär strukturbiologi Petzold, 171 77 Stockholm
Del av:
- Institutionen för medicinsk biokemi och biofysik
- Petzolds grupp
Artiklar
- Journal article: NUCLEIC ACIDS RESEARCH. 2025;53(13):gkaf633Sweetapple L; Kosek DM; Banijamali E; Becker W; Mueller J; Karadiakos C; Baronti L; Guzzetti I; Schritt D; Chen A; Andersson ER; Petzold K
- Article: NUCLEIC ACIDS RESEARCH. 2025;53(8):gkaf364Kosek DM; Petzold K; Andersson ER
- Journal article: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2025;64(10):e202421062Brauser M; Petzold K; Thiele CM
- Journal article: JOURNAL OF BIOMOLECULAR NMR. 2024;78(4):249-264Annecke HTP; Eidelpes R; Feyrer H; Ilgen J; Guerdap CO; Dasgupta R; Petzold K
- Journal article: NUCLEIC ACIDS RESEARCH. 2024;52(19):11995-12004Dasgupta R; Becker W; Petzold K
- Article: BRITISH JOURNAL OF PHARMACOLOGY. 2024;181(20):3819-3835Gratz L; Sajkowska-Kozielewicz JJ; Wesslowski J; Kinsolving J; Bridge LJ; Petzold K; Davidson G; Schulte G; Kozielewicz P
- Article: NUCLEIC ACIDS RESEARCH. 2023;51(20):11162-11177Kosek DM; Banijamali E; Becker W; Petzold K; Andersson ER
- Article: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2023;145(19):10659-10668Sahin C; Motso A; Gu X; Feyrer H; Lama D; Arndt T; Rising A; Gese GV; Haellberg BM; Marklund EG; Schafer NP; Petzold K; Teilum K; Wolynes PG; Landreh M
- Article: RNA. 2023;29(3):317-329Banijamali E; Baronti L; Becker W; Sajkowska-Kozielewicz JJ; Huang T; Palka C; Kosek D; Sweetapple L; Mueller J; Stone MD; Andersson ER; Petzold K
- Article: NATURE COMMUNICATIONS. 2022;13(1):5750Clemente P; Calvo-Garrido J; Pearce SF; Schober FA; Shigematsu M; Siira SJ; Laine I; Spahr H; Steinmetzger C; Petzold K; Kirino Y; Wibom R; Rackham O; Filipovska A; Rorbach J; Freyer C; Wredenberg A
- Article: PLOS ONE. 2022;17(7):e0264662Feyrer H; Gurdap CO; Marusic M; Schlagnitweit J; Petzold K
- Article: NATURE PROTOCOLS. 2021;16(11):5146-5170Riad M; Hopkins N; Baronti L; Karlsson H; Schlagnitweit J; Petzold K
- Journal article: JOVE-JOURNAL OF VISUALIZED EXPERIMENTS. 2021;(173)Practical Aspects of Sample Preparation and Setup of 1H R1ρ Relaxation Dispersion Experiments of RNAFeyrer H; Schlagnitweit J; Petzold K
- Journal article: NUCLEIC ACIDS RESEARCH. 2021;49(12):7204-7205Wacker A; Weigand JE; Akabayov SR; Altincekic N; Bains JK; Banijamali E; Binas O; Castillo-Martinez J; Cetiner E; Ceylan B; Chiu L-Y; Davila-Calderon J; Dhamotharan K; Duchardt-Ferner E; Ferner J; Frydman L; Fuertig B; Gallego J; Gruen JT; Hacker C; Haddad C; Haehnke M; Hengesbach M; Hiller F; Hohmann KF; Hymon D; de Jesus V; Jonker H; Keller H; Knezic B; Landgraf T; Loehr F; Luo L; Mertinkus KR; Muhs C; Novakovic M; Oxenfarth A; Palomino-Schaetzlein M; Petzold K; Peter SA; Pyper DJ; Qureshi NS; Riad M; Richter C; Saxena K; Schamber T; Scherf T; Schlagnitweit J; Schlundt A; Schnieders R; Schwalbe H; Simba-Lahuasi A; Sreeramulu S; Stirnal E; Sudakov A; Tants J-N; Tolbert BS; Voegele J; Weiss L; Wirmer-Bartoschek J; Martin MAW; Woehnert J; Zetzsche H
- Article: JOVE-JOURNAL OF VISUALIZED EXPERIMENTS. 2021;(173)Practical Aspects of Sample Preparation and Setup of 1H R1ρ Relaxation Dispersion Experiments of RNAFeyrer H; Schlagnitweit J; Petzold K
- Article: CURRENT PROTOCOLS. 2021;1(6):e159Karlsson H; Feyrer H; Baronti L; Petzold K
- Article: BIOMOLECULAR NMR ASSIGNMENTS. 2021;15(1):203-211Schnieders R; Peter SA; Banijamali E; Riad M; Altincekic N; Bains JK; Ceylan B; Fuertig B; Gruen JT; Hengesbach M; Hohmann KF; Hymon D; Knezic B; Oxenfarth A; Petzold K; Qureshi NS; Richter C; Schlagnitweit J; Schlundt A; Schwalbe H; Stirnal E; Sudakov A; Voegele J; Wacker A; Weigand JE; Wirmer-Bartoschek J; Woehnert J
- Article: NUCLEIC ACIDS RESEARCH. 2020;48(22):12415-12435Wacker A; Weigand JE; Akabayov SR; Altincekic N; Bains JK; Banijamali E; Binas O; Castillo-Martinez J; Cetiner E; Ceylan B; Chiu L-Y; Davila-Calderon J; Dhamotharan K; Duchardt-Ferner E; Ferner J; Frydman L; Fuertig B; Gallego J; Gruen JT; Hacker C; Haddad C; Haehnke M; Hengesbach M; Hiller F; Hohmann KF; Hymon D; de Jesus V; Jonker H; Keller H; Knezic B; Landgraf T; Loehr F; Luo L; Mertinkus KR; Muhs C; Novakovic M; Oxenfarth A; Palomino-Schatzlein M; Petzold K; Peter SA; Pyper DJ; Qureshi NS; Riad M; Richter C; Saxena K; Schamber T; Scherf T; Schlagnitweit J; Schlundt A; Schnieders R; Schwalbe H; Simba-Lahuasi A; Sreeramulu S; Stirnal E; Sudakov A; Tants J-N; Tolbert BS; Voegele J; Weiss L; Wirmer-Bartoschek J; Martin MAW; Wohnert J; Zetzsche H
- Article: RNA. 2020;26(8):1023-1037Karlsson H; Baronti L; Petzold K
- Article: NATURE. 2020;583(7814):139-144Baronti L; Guzzetti I; Ebrahimi P; Friebe Sandoz S; Steiner E; Schlagnitweit J; Fromm B; Silva L; Fontana C; Chen AA; Petzold K
- Article: MOLECULES. 2020;25(5):E1142-1142Feyrer H; Munteanu R; Baronti L; Petzold K
- Journal article: CHEMBIOCHEM. 2019;20(21):2683Marušič M; Schlagnitweit J; Petzold K
- Article: CHEMBIOCHEM. 2019;20(19):2474-2478Schlagnitweit J; Sandoz SF; Jaworski A; Guzzetti I; Aussenac F; Carbajo RJ; Chiarparin E; Pell AJ; Petzold K
- Article: METHODS. 2019;162:96-107Ebrahimi P; Kaur S; Baronti L; Petzold K; Chen AA
- Article: CHEMISTRY-A EUROPEAN JOURNAL. 2018;24(23):6067-6070Schlagnitweit J; Steiner E; Karlsson H; Petzold K
- Article: JOURNAL OF BIOMOLECULAR NMR. 2017;69(2):93-99Niklasson M; Otten R; Ahlner A; Andresen C; Schlagnitweit J; Petzold K; Lundstrom P
- Article: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2016;55(51):15869-15872Steiner E; Schlagnitweit J; Lundstrom P; Petzold K
- Journal article: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2016;128(51):16101-16104Steiner E; Schlagnitweit J; Lundström P; Petzold K
- Article: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2015;137(40):12954-12965Salmon L; Giambasu GM; Nikolova EN; Petzold K; Bhattacharya A; Case DA; Al-Hashimi HM
- Article: NATURE. 2015;519(7543):315-320Kimsey IJ; Petzold K; Sathyamoorthy B; Stein ZW; Al-Hashimi HM
- Journal article: NEPHROLOGY DIALYSIS TRANSPLANTATION. 2014;29(12):2353Petzold K; Gansevoort RT; Ong ACM; Devuyst O; Rotar L; Eckardt K-U; Koettgen A; Pirson Y; Remuzzi G; Sandford R; Tesar V; Ecder T; Chaveau D; Torra R; Budde K; Le Meur Y; Wuethrich RP; Serra AL
- Journal article: RESPIROLOGY. 2014;19(1):67-73Kuhn H; Petzold K; Hammerschmidt S; Wirtz H
- Article: JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY. 2013;28(1):78-88Makatini MM; Petzold K; Alves CN; Arvidsson PI; Honarparvar B; Govender P; Govender T; Kruger HG; Sayed Y; Lameira J; Maguire GEM; Soliman MES
- Article: RSC ADVANCES. 2013;3(45):23355-23360Pawar SA; Jabgunde AM; Petzold K; Maguire GEM; Dhavale DD; Kruger HG; Govender T
- Article: NATURE. 2012;491(7426):724-728Dethoff EA; Petzold K; Chugh J; Casiano-Negroni A; Al-Hashimi HM
- Article: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. 2012;57:459-467Makatini MM; Petzold K; Arvidsson PI; Honarparvar B; Govender T; Maguire GEM; Parboosing R; Sayed Y; Soliman MES; Kruger HG
- Journal article: CHEMMEDCHEM. 2012;7(6):938Honarparvar B; Makatini MM; Pawar SA; Petzold K; Soliman MES; Arvidsson PI; Sayed Y; Govender T; Maguire GEM; Kruger HG
- Article: CHEMMEDCHEM. 2012;7(6):1009-1019Honarparvar B; Makatini MM; Pawar SA; Petzold K; Soliman MES; Arvidsson PI; Sayed Y; Govender T; Maguire GEM; Kruger HG
- Article: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. 2011;46(9):3976-3985Makatini MM; Petzold K; Sriharsha SN; Ndlovu N; Soliman MES; Honarparvar B; Parboosing R; Naidoo A; Arvidsson PI; Sayed Y; Govender P; Maguire GEM; Kruger HG; Govender T
- Article: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS. 2011;21(8):2274-2277Makatini MM; Petzold K; Sriharsha SN; Soliman MES; Honarparvar B; Arvidsson PI; Sayed Y; Govender P; Maguire GEM; Kruger HG; Govender T
- Article: STRUCTURAL CHEMISTRY. 2011;22(1):161-166Shaikh M; Petzold K; Kruger HG; du Toit K
- Article: TETRAHEDRON ASYMMETRY. 2010;21(23):2859-2867Naicker T; Petzold K; Singh T; Arvidsson PI; Kruger HG; Maguire GEM; Govender T
- Article: MOLECULAR MICROBIOLOGY. 2010;77(6):1539-1555Olofsson A; Vallstrom A; Petzold K; Tegtmeyer N; Schleucher J; Carlsson S; Haas R; Backert S; Wai SN; Grobner G; Arnqvist A
- Article: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2009;131(40):14150-14151Petzold K; Olofsson A; Arnqvist A; Grobner G; Schleucher J
- Article: CHEMISTRY-A EUROPEAN JOURNAL. 2009;15(3):585-588Thiele CM; Petzold K; Schleucher J
- Article: ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS. 2008;474(1):39-47Petzold K; Ohman A; Backman L
- Article: NUCLEIC ACIDS RESEARCH. 2007;35(20):6854-6861Petzold K; Duchardt E; Flodell S; Larsson G; Kidd-Ljunggren K; Wijmenga S; Schleucher J
- Article: CELLULAR & MOLECULAR BIOLOGY LETTERS. 2005;10(4):595-612Robertsson J; Petzold K; Löfvenberg L; Backman L
- Visa fler
Alla övriga publikationer
- Conference publication: PROTEIN SCIENCE. 2023;32(12)Sahin C; Motso A; Gu X; Feyrer H; Lama D; Arndt T; Rising A; Gese GV; Hallberg M; Marklund EG; Schafer NP; Petzold K; Teilum K
- Conference publication: BIOPHYSICAL JOURNAL. 2023;122(3):27APetzold K
- Preprint: BIORXIV. 2022Sahin C; Motso A; Gu X; Feyrer H; Lama D; Arndt T; Rising A; Gese GV; Hällberg M; Marklund E; Schafer N; Petzold K; Teilum K; Wolynes P; Landreh M
- Preprint: BIORXIV. 2022Grätz L; Sajkowska-Kozielewicz J; Wesslowski J; Petzold K; Davidson G; Schulte G; Kozielewicz P
- Preprint: BIORXIV. 2022Feyrer H; Gurdap CO; Marušič M; Schlagnitweit J; Petzold K
- Conference publication: BIOPHYSICAL JOURNAL. 2021;120(3):286APetzold K
- Review: CHEMBIOCHEM. 2019;20(21):2685-2710Marusic M; Schlagnitweit J; Petzold K
- Preprint: BIORXIV. 2019Schlagnitweit J; Sandoz SF; Jaworski A; Guzzetti I; Aussenac F; Carbajo RJ; Chiarparin E; Pell AJ; Petzold K
- Review: ANALYTICAL AND BIOANALYTICAL CHEMISTRY. 2018;410(14):3239-3252Baronti L; Karlsson H; Marusic M; Petzold K
- Conference publication: FASEB JOURNAL. 2015;29Chen Y; Frank A; Petzold K; Liu X; Brooks CIII; Al-Hashimi H; Fierke C
- Conference publication: ACTA PHYSIOLOGICA. 2014;210:74Spichtig D; Zhang H; Mohebbi N; Pavik I; Petzold K; Stange G; Saleh L; Biber J; Jaeger P; Serra AL; Wagner CA
- Conference publication: FASEB JOURNAL. 2013;27:96.1Al-Hashimi H; Petzold K; Chugh J; Mustoe T; Dethoff E; Brooks CIII
- Other: NATURE CHEMISTRY. 2011;3(12):913-915Petzold K; Al-Hashimi HM
- Conference publication: BIOPHYSICAL JOURNAL. 2009;96(3):409APetzold K; Olofsson A; Arnqvist A; Boren T; Grobner G; Schleucher J
- Conference publication: ZOONOSES AND PUBLIC HEALTH. 2007;54:93-94Olofsson A; Baeckstroem A; Petzold K; Groebner G; Wai SN; Carlsson S; Schleucher J; Arnqvist A
- Conference publication: BIOPHYSICAL JOURNAL. 2007;:435APetzold K; Bugaytsova J; Olofsson A; Arnqvist A; Aisenbrey C; Boren T; Schleucher J; Grobner G
Forskningsbidrag
- Swedish Research Council1 January 2019 - 31 December 2024
- Cancer gate holder miR-34a: Understand the structure of the cell's environmentSwedish Cancer Society1 January 2018The human genome encodes> 1700 microRNA (miRNA), which controls at least 30% of all proteins expressed. Unregulated miRNA has been found in> 50% of all forms of cancer and thus plays a central role in the development of cancer. Understanding miRNA function and structure is crucial for understanding cancer regulation. The microRNA miR34a, studied in this project, regulates many cancer-related proteins, e.g. Sirt1, CD44, BCL2. A major problem in the current structure determining methods is that it is used in simplified environment, water with small salt. We want to study microRNA structure and regulation in living cells. We use nuclear magnetic resonance (NMR) to illuminate miRNA-mRNA interaction in in vitro environment and in living cells. In addition, we will use biophysical methods to study RNA, e.g. EMSA, UV fusion, fluorescence-based interaction studies, to investigate the structure of miR-34a with different target RNAs in vitro and in living cells. This will lead to a hypothesis of which structure is active with a focus on a specific mRNA under certain environment. We will examine this conformation with modifications on miR-34a and test this structure, in collaboration, about their function in cells and in mice. Since structural change in RNA can control cancer development, this is likely to reveal a whole new level of adjustment of miRNA activities. My research will help to understand the selection process of miRNAs as cancer regulators and therefore will generate important information necessary for innovative development of miRNA tools for cancer and pharmaceutical research. Insights The dynamics of base pairing facilitate predicting other miRNA mRNA complexes and their motions. There is already a miR 34a analog, which is tested in clinical phase 1. Unfortunately, it is unknown how miR 34a is selected for its target mRNA and can therefore create many side effects.
- MicroRNA adjusts cancer: change the structure to select functionSwedish Cancer Society1 January 2017The human genome encodes> 1700 microRNA (miRNA), which controls at least 30% of all proteins expressed. Unregulated miRNA has been found in> 50% of all forms of cancer and thus plays a central role in the development of cancer. Understanding miRNA function and structure is crucial for understanding cancer regulation. The microRNA miR 34a, studied in this project, inactivates the cancer suppressor protein p53 via deacetylation of SIRT1. The mechanism of miR 34a inhibition is not entirely clear due to lack of structural and dynamic information, but to study movement and explain their functions requires observation as in a "movie". We use nuclear magnetic resonance (NMR) to illuminate miRNA-mRNA interaction. This is based on base pair energetics and alternative structure formation and allows fine tuning of miRNA based regulation of translation of cancer-related proteins, such as miR 34a. MiR-34a regulates p53, which has a key role in slowing down cancer. We analyze miRNA mRNA complexes that regulate P53's activity through structural changes. Furthermore, miR 34a has> 50 target mRNA, but it is not understood which mRNA is regulated at any time. We study with NMR, biochemical and in vivo methods how miR 34a selects its correct target from a pool of mRNA (eg, CD44, Jagged, Notch) As structural change in RNA can control cancer development, this is likely to reveal a whole new level of miRNA activity adjustment. My research will help to understand the selection process of miRNAs as cancer regulators and therefore will generate important information necessary for innovative development of miRNA tools for cancer and pharmaceutical research. Insights The dynamics of base pairing facilitate predicting other miRNA-mRNA complexes and their motions. There is already a miR-34a analog, which is tested in clinical phase 1. Unfortunately, it is unknown how miR-34a is selected for its target mRNA and can therefore create many side effects.
- Knut and Alice Wallenberg Foundation1 January 2016 - 1 January 2021
- MicroRNA adjusts cancer: change the structure to select functionSwedish Cancer Society1 January 2016The human genome encodes> 1700 microRNA (miRNA), which controls at least 30% of all proteins expressed. Unregulated miRNA has been found in> 50% of all forms of cancer and thus plays a central role in the development of cancer. Understanding miRNA function and structure is crucial for understanding cancer regulation. The microRNA miR 34a, studied in this project, inactivates the cancer suppressor protein p53 via deacetylation of SIRT1. The mechanism of miR 34a inhibition is not entirely clear due to lack of structural and dynamic information, but to study movement and explain their functions requires observation as in a "movie". We use nuclear magnetic resonance (NMR) to illuminate miRNA-mRNA interaction. This is based on base pair energetics and alternative structure formation and allows fine tuning of miRNA based regulation of translation of cancer-related proteins, such as miR 34a. MiR-34a regulates p53, which has a key role in slowing down cancer. We analyze miRNA mRNA complexes that regulate P53's activity through structural changes. Furthermore, miR 34a has> 50 target mRNA, but it is not understood which mRNA is regulated at any time. We study with NMR, biochemical and in vivo methods how miR 34a selects its correct target from a pool of mRNA (eg, CD44, Jagged, Notch) As structural change in RNA can control cancer development, this is likely to reveal a whole new level of miRNA activity adjustment. My research will help to understand the selection process of miRNAs as cancer regulators and therefore will generate important information necessary for innovative development of miRNA tools for cancer and pharmaceutical research. Insights The dynamics of base pairing facilitate predicting other miRNA-mRNA complexes and their motions. There is already a miR-34a analog, which is tested in clinical phase 1. Unfortunately, it is unknown how miR-34a is selected for its target mRNA and can therefore create many side effects.
- RNA switches – how structural changes influence the functionSwedish Foundation for Strategic Research1 September 2015 - 31 August 2018
- MicroRNA adjusts cancer: change the structure to select functionSwedish Cancer Society1 January 2015The human genome encodes> 1700 microRNA (miRNA), which controls at least 30% of all proteins expressed. Unregulated miRNA has been found in> 50% of all forms of cancer and thus plays a central role in the development of cancer. Understanding miRNA function and structure is crucial for understanding cancer regulation. The microRNA miR 34a, studied in this project, inactivates the cancer suppressor protein p53 via deacetylation of SIRT1. The mechanism of miR 34a inhibition is not entirely clear due to lack of structural and dynamic information, but to study movement and explain their functions requires observation as in a "movie". We use nuclear magnetic resonance (NMR) to illuminate miRNA-mRNA interaction. This is based on base pair energetics and alternative structure formation and allows fine tuning of miRNA based regulation of translation of cancer-related proteins, such as miR 34a. MiR-34a regulates p53, which has a key role in slowing down cancer. We analyze miRNA mRNA complexes that regulate P53's activity through structural changes. Furthermore, miR 34a has> 50 target mRNA, but it is not understood which mRNA is regulated at any time. We study with NMR, biochemical and in vivo methods how miR 34a selects its correct target from a pool of mRNA (eg, CD44, Jagged, Notch) As structural change in RNA can control cancer development, this is likely to reveal a whole new level of miRNA activity adjustment. My research will help to understand the selection process of miRNAs as cancer regulators and therefore will generate important information necessary for innovative development of miRNA tools for cancer and pharmaceutical research. Insights The dynamics of base pairing facilitate predicting other miRNA-mRNA complexes and their motions. There is already a miR-34a analog, which is tested in clinical phase 1. Unfortunately, it is unknown how miR-34a is selected for its target mRNA and can therefore create many side effects.
- How RNAs move - dynamics of regulatory RNAsRagnar Söderberg Foundation1 January 2015 - 31 December 2019
- How do microRNAs select their targetsNovo Nordisk Foundation1 July 2014 - 30 June 2015
- Swedish Research Council1 August 2013 - 31 July 2014
Anställningar
- Senior Forskare, Medicinsk biokemi och biofysik, Karolinska Institutet, 2022-
Examina och utbildning
- Docent, Biofysik, Karolinska Institutet, 2019