Cell Biology of Cancer – Staffan Strömblad's research group

All tissue cells are surrounded by an extracellular matrix (ECM). Cell-matrix interactions control cell proliferation, survival, migration and differentiation, all key processes in cancer development and progression. We study the nature of cell-matrix interactions and how these interactions influence key cellular functions, including cell proliferation and migration.

Vår forskning

Cancerns cellbiologi med fokus på cell–matrix-interaktioner

När tumörer bildas, utvecklas och fortskrider blir ECM gradvis styvare, vilket förklarar varför tumörer ofta upptäcks som en ”knöl”. Den ökade styvheten orsakas av en ökad inlagring och korsbindning av extracellulärmatrix (ECM).

Vi undersöker hur ECM:s mekaniska egenskaper påverkar olika cellulära funktioner under cancerutveckling och progression. Den ökade styvheten uppfattas av cellerna och omvandlas till intracellulära signaler via s.k. mekanotransduktion, vilket ökar tumörens aggressivitet genom att främja cellproliferation och invasion.

Vårt fokus ligger på att förstå hur mekanotransduktion, som styrs av ECM-styvning, reglerar cellulär signalering och genuttryck samt vilken roll dessa processer spelar i cancer. Syftet är att förbättra den grundläggande förståelsen av cancerutveckling på cellnivå.

Läs mer om gruppens forskning på den engelska sidan.

Publications

Selected publications

Funding

Grants

  • Cell-matrix interactions in cancer
    Swedish Research Council
    1 January 2026 - 1 January 2029
  • Which pre-invasive tumors should be treated?
    Radiumhemmets Research Funds
    1 January 2025 - 1 January 2027
  • Cell-matrix interactions in cancer
    Swedish Cancer Society
    1 January 2024 - 1 January 2026
  • European Commission
    1 December 2023 - 31 August 2027
    Swept lasers have enabled paradigm-shifts in biomedical imaging and diagnostics. The SWEEPICS project will research and develop the next generation of swept source lasers with flexible pulse modulation capability, high power output, multi-wavelength coherent output and multi-application potential. SWEEPICS will develop new laser-based systems: a high-speed, high resolution multiphoton high content screening system, a multimodal non-invasive imaging system based on high-speed photoacoustics and multiphoton microscopy, and a smart microscope for accelerated acquisition&diagnostics. The inter-disciplinary consortium of European partners will showcase the SWEEPICS technology in cutting-edge use cases based on novel vascular organoids for animal-free drug-testing and infection studies. This disruptive SWEEPICS technology will rapidly generate high-resolution diagnostic imaging in three-dimension, where the high imaging depth permits penetrating millimeter deep into tissue-like organoids and imaging at high temporal and spatial resolution in order to allow for a drastic reduction of animal testing and increased speed of diagnostic results. It will allow the study of dynamic processes in real-time and at multiple length scales, enabling researchers to observe how cells and tissues respond to viral infections or pathogen-induced inflammation, while also permitting a high-throughput enabled discovery of novel diagnostic biomarkers. Overall, this technology represents a major breakthrough in capable laser technology for high accuracy and throughput medical diagnostics and is poised to make significant contributions to the European laser and biomedical technology landscape.

Staff and contact

Group leader

All members of the group

Keywords:
Cancer and Oncology Cell Biology Cell and Molecular Biology Cell-Matrix Junctions Cellular Senescence Integrins Intercellular Signaling Peptides and Proteins Mechanotransduction, Cellular rhoA GTP-Binding Protein rhoB GTP-Binding Protein Show all
Content reviewer:
21-01-2026