Skip to main content

Kardamakis group

Our research group explores the neural mechanisms that link spatial perception to gaze motor action.

Visuomotor circuits in space and motion.
Visuomotor circuits in space and motion.

Research focus

Visuomotor Circuits in Space and Action

We are a newly established research group exploring the neural mechanisms that link spatial perception to gaze motor action. One main research objective is to obtain a mechanistic understanding of how neural circuits implement computations that link visual inputs to patterns of motor output at the level of the individual neuron and their synaptic interactions within subcortical and neocortical sensorimotor loops.

A basic and evolutionarily conserved sensorimotor behaviour that all animals, including humans, rely on is gaze reorientation for the deployment of visuospatial attention – a task that is executed rapidly, precisely and versatilely, yet involves a complex function of stimulus saliency, goal/task-dependency, motivation and experience-based learning. Critical to this function is the phylogenetically ancient vertebrate midbrain structure, the superior colliculus, which integrates sensory information from the retina (bottom-up) and descending inputs that can modulate visuomotor function from areas of the neocortex and the basal ganglia (top-down).Our long-term vision is to unmask the role of such circuits by controlling this plethora of diverse inputs by disentangling their synaptic interaction with cell-type specificity during behaviour. We aim to manipulate the core transformations of spatial information used to (re)shape goal-dependent action by employing a wide range of experimental approaches that include in vivo and in vitro electrophysiology, transgenic and viral strategies for circuit mapping, optogenetics combined with behavioural paradigms, computational methods and virtual reality.

Group Members

Peng Cui – Postdoc

Teresa Femenia Canto – Associated

Andreas Kardamakis – Assistant Professor

Mehdi Orikhani-Seyedlar – Postdoc

Research associates

Wilhelm Thunberg

Teresa Femenia Canto

Research Support

  • Swedish Brain Foundation
  • Swedish Research Council
  • Karolinska Institutet
  • Strategic Neuroscience (StratNeuro)
  • Hedlunds Stifelse

Publications

Flowing from sense to action. Are neural integrators necessary?
Kardamakis AA
J. Physiol. (Lond.) 2018 Dec;596(24):6131-6132

Direct Dopaminergic Projections from the SNc Modulate Visuomotor Transformation in the Lamprey Tectum.
Pérez-Fernández J, Kardamakis AA, Suzuki DG, Robertson B, Grillner S
Neuron 2017 Nov;96(4):910-924.e5

Spatiotemporal interplay between multisensory excitation and recruited inhibition in the lamprey optic tectum.
Kardamakis AA, Pérez-Fernández J, Grillner S
Elife 2016 09;5():

Tectal microcircuit generating visual selection commands on gaze-controlling neurons.
Kardamakis AA, Saitoh K, Grillner S
Proc. Natl. Acad. Sci. U.S.A. 2015 Apr;112(15):E1956-65

Neural network simulations of the primate oculomotor system. V. Eye-head gaze shifts.
Kardamakis AA, Grantyn A, Moschovakis AK
Biol Cybern 2010 Mar;102(3):209-25

Optimal control of gaze shifts.
Karamakis A, Moschovakis A
J Neurosci, 29(24); 7723-30

Implications of interrupted eye-head gaze shifts for resettable integrator reset.
Kardamakis AA, Moschovakis AK
Brain Res. Bull. 2006 Jun;70(2):171-8

Contact

Antonis Andreas Kardamakis

Research engineer
C4.Forskning.Grillner
CA INCF