Vesna Munic Kos
Affiliated to Research
E-mail: vesna.munic.kos@ki.se
Visiting address: Solnavägen 9, Biomedicum C5, 17165 Solna
Postal address: C3 Fysiologi och farmakologi, C3 FyFa Medicinsk hjärt- och skelettmuskelforskning, 171 77 Stockholm
About me
- Cell and molecular biologist and project leader experienced in pharmacology
and toxicology.
Main focus of my current research are chemicals (pharmaceuticals and
environmental toxins) which accumulate in organisms, and the effects they
have on cells. During 13 years of my career in the research of pharmaceutical
industry large part of my research was dealing with anti-inflammatories and
highly accumulating pharmaceuticals, especially of macrolide class. Now I am
studying endocrine disrupting chemicals and the mechanisms of their impact on
inflammation and metabolic disorders as well as their toxicokinetic
properties.
Research
- *PROJECTS*
*EU Horizon 2020 project GOLIATH – Beating Goliath: Generation Of Novel,
Integrated and Internationally Harmonised Approaches for Testing Metabolism
Disrupting Compounds (2019-2023) – principal investigator for Karolinska
Institutet*
The aim of this project is to develop and evaluate in vitro and in silico
methods for identification and testing of endocrine disrupting chemicals
contributing to metabolic disorders. Karolinska Institutet is one of 14
participating institutions from all over Europe and one from USA. Here, we
work on the development and evaluation of in vitro methods for identification
of metabolism disrupting chemiclas affecting adipogenesis and the development
of insulin resistance in adipocytes.
*The evaluation of /in vitro/ skeletal muscle models for the assessment of
metabolism disrupting chemicals contributing to insulin resistance –
Swedish Research Council Formas (2020-2023) - co-applicant*
The aim of this project is to analyze the impact of metabolism disrupting
chemicals on various in vitro skeletal muscle models mainly related to
insulin sensitivity and glucose utilisation, and their possible contribution
to the development of insulin resistance and type 2 diabetes.
*Intracellular exposure: a new parameter for prediction of toxicological
outcome after exposure to endocrine disrupting chemicals? – Swedish
Research Council Formas (2018-2023) - co-applicant*
This project is a collaboration with Prof. Per Artursson from Uppsala
University (Department of Pharmacy), and Prof. Ian Cotgreave from RISE. The
aim of the project is to determine the intracellular unbound fraction of
selected endocrine disrupting chemicals (EDCs), and assess the impact of this
understudied kinetic parameter on the assessment of adverse effects of
endocrine disrupting chemicals (EDCs) in various cell based test systems.
This research should ultimately help better prediction of toxic effects of
chemicals from computational and cell based models.
*Predicting the effects of highly accumulating compounds (2014-2019) –
principal investigator*
By being present in high concentrations, accumulating chemicals may pose a
chronic threat for an organism. As our knowledge about biological systems
expands, it is necessary to constantly revalidate our conclusions about the
safety of such chemicals because of their prolonged presence.
In my research, I am using in vitro techniques to analyze the consequences of
compound’s accumulation in cells and their binding to biological membranes.
I am looking at how these compounds affect various processes in cells,
physiological functions of membranes and extracellular membrane vesicles,
especially in the context of immune system and inflammation. In
collaboration, we do structure-property relationship studies to improve
detection and prediction of accumulating chemicals.
*EU-ToxRisk – An Integrated European ‘Flagship’ Programme Driving
Mechanism-based Toxicity Testing and Risk Assessment for the 21st century
(2016-2022) - collaborator*
http://www.eu-toxrisk.eu/ [1]
For this project we have introduced a quantitative high content imaging assay
that we now use for screening of various chemicals on their potential effects
on neuron differentiation and degradation. Parameters describing neurite
length, number, branching points and straightness, together with cell body
area and cell number are quantified using our high content analysis system.
*PUBLICATIONS:*
*Obesity III: Obesogen assays: Limitations, strengths, and new directions.*
Kassotis CD, Vom Saal FS, Babin PJ, Lagadic-Gossmann D, Le Mentec H, Blumberg
B, Mohajer N, Legrand A, Munic Kos V, Martin-Chouly C, Podechard N, Langouët
S, Touma C, Barouki R, Ji Kim M, Audouze K, Choudhury M, Shree N, Bansal A,
Howard S, Heindel JJ. /Biochem Pharmacol./ 2022, 115014.
https://pubmed.ncbi.nlm.nih.gov/35393121/ [2]
*Obesity II: Establishing Causal Links Between Chemical Exposures and
Obesity.* Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin
PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N,
Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M,
Hoepner LA, Holloway AC, Howell G 3rd, Kassotis C, Kay MK, Ji Kim M,
Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica
Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA,
Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F,
Blumberg B. /Biochem Pharmacol./ 2022, 115015.
https://pubmed.ncbi.nlm.nih.gov/35395240/ [3]
*High throughput screening of bisphenols and their mixtures under conditions
of low-intensity adipogenesis of human mesenchymal stem cells
(hMSCs). *Norgren K, Tuck A, Vieira Silva A, Burkhardt P, Öberg M, Munic
Kos V. /Food Chem Toxicol/. 2022, 161:112842.
https://doi.org/10.1016/j.fct.2022.112842 [4]
*Neurotoxicity and underlying cellular changes of 21 mitochondrial
respiratory chain inhibitors.* Delp J, Cediel‑Ulloa A, Suciu I, Kranaster
P, van Vugt‑Lussenburg BMA, Munic Kos V, van der Stel W, Carta G, Hougaard
Bennekou S, Jennings P, van de Water B, Forsby A, Leist M. /Arch Toxicol, /
2021 - 95, 591–615, https://doi.org/10.1007/s00204-020-02970-5 [5]
*Novel class of fast acting antimalarial agents: substituted 15-membered
azalides.* Peric M, Pesic D, Alihodzic S, Fajdetic A, Herreros E, Gamo FJ,
Angulo-Barturen I, Jimenez-Diaz MB, Ferrer-Bazaga S, Martinez Martinez MS,
Gargallo-Viola D, Mathis A, Kessler A, Banjanac M, Padovan J, Bencetic, V,
Munic Kos V, Bukvic M, Erakovic Haber V, Spaventi R. /Br J Pharmacol, /2021
178:363–377 https://pubmed.ncbi.nlm.nih.gov/33085774/ [6]
*Existing highly accumulating lysosomotropic drugs with potential for
repurposing to target COVID-19*. Norinder U, Tuck A, Norgren K, Munic Kos
V. /Biomed Pharmacother/ 2020,
130:110582 https://www.sciencedirect.com/science/article/pii/S0753332220307757?via%3Dihub
[7]
*The GOLIATH Project: Towards an Internationally Harmonised Approach for
Testing Metabolism Disrupting Compounds.* Legler J, Zalko D, Jourdan F,
Jacobs M, Fromenty B, Balaguer P, Bourguet W, Munic Kos V, Nadal A,
Beausoleil C, Cristobal S, Remy S, Ermler S, Margiotta-Casaluci L, Griffin J,
Blumberg B, Chesne C, Hoffmann S, Andersson P, Kamstra
J. /Int J Mol Sci /2020
21:3480. https://pubmed.ncbi.nlm.nih.gov/32423144/ [8]
*QSAR Models for Predicting Five Levels of Cellular Accumulation of
Lysosomotropic Macrocycles.* Norinder U, Munic Kos V. /Int J Mol Sci/.
2019- 20(23):5938. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928787 [9]/
*Quantification of intracellular accumulation and retention of lysosomotropic
macrocyclic compounds by high-throughput imaging of lysosomal changes.
*Easwaranathan A, Inci B, Ulrich S, Brunken L, Nikiforova V, Norinder U,
Swanson S, Munic Kos V. /J Pharm Sci/. 2019 - 108:652-660.
https://www.ncbi.nlm.nih.gov/m/pubmed/30419273/#fft [10]
*Lysosomotropic cationic amphiphilic drugs inhibit adipocyte differentiation
in 3T3-L1K cells via accumulation in cells and phospholipid membranes, and
inhibition of autophagy. *Kagebeck P, Nikiforova V, Brunken L, Easwaranathan
A, Ruegg J, Cotgreave I, Munic Kos V. /Eur J Pharmacol./ 2018 - 829:44-53.
https://www.ncbi.nlm.nih.gov/pubmed/29627311 [11]
*Cellular accumulation and lipid binding of perfluorinated alkylated
substances (PFASs) - A comparison with lysosomotropic drugs. *Sanchez Garcia
D, Sjödin M, Hellstrandh M, Norinder U, Nikiforova V, Lindberg J, Wincent E,
Bergman Å, Cotgreave I, Munic Kos V. /Chem Biol Interact. /2018 - 281:1-10.
https://www.ncbi.nlm.nih.gov/pubmed/29248446 [12]
*Around the macrolide - Impact of 3D structure of macrocycles on
lipophilicity and cellular accumulation. *Koštrun S, Munic Kos V, Matanović
Škugor M, Palej Jakopović I, Malnar I, Dragojević S, Ralić J, Alihodžić
S. /Eur J Med Chem/. 2017 - 133:351-364.
https://www.ncbi.nlm.nih.gov/pubmed/28410508 [13]
*A comparison of in vitro ADME properties and pharmacokinetics of
azithromycin and selected 15-membered ring macrolides in rodents*. Milić A,
Mihaljević VB, Ralić J, Bokulić A, Nožinić D, Tavčar B, Mildner B,
Munić V, Malnar I, Padovan J. /Eur J Drug Metab Pharmacokinet. /2014
39(4):263-76. http://www.ncbi.nlm.nih.gov/pubmed/24114177 [14]
*Structure-property relationship for cellular accumulation of macrolones in
human polymorphonuclear leukocytes (PMNs). Munić Kos V*, Koštrun S,
Fajdetić A, Bosnar M, Kelnerić Ž, Stepanić V, Eraković Haber V. /Eur J
Pharm Sci/. 2013- 49(2):206-19. http://www.ncbi.nlm.nih.gov/pubmed/23474356
[15]
*Macrolactonolides: a novel class of anti-inflammatory
compounds.* Tomašković L, Komac M, Makaruha Stegić O, Munić V, Ralić J,
Stanić B, Banjanac M, Marković S, Hrvačić B, Čipčić Paljetak H,
Padovan J, Glojnarić I, Eraković Haber V, Mesić M, Merćep M. /Bioorg Med
Chem/. 2013 - 21(1):321-32. http://www.ncbi.nlm.nih.gov/pubmed/23199485 [16]
*Fluorescently labeled macrolides as a tool for monitoring cellular and
tissue distribution of azithromycin.* Matijašić M, *Munić Kos V*, Nujić
K, Cužić S, Padovan J, Kragol G, Alihodžić S, Mildner B, Verbanac D,
Eraković Haber V. /Pharmacol Res/. 2012
66(4):332-42. http://www.ncbi.nlm.nih.gov/pubmed/22749903 [17]
*Azithromycin drives in vitro GM-CSF/IL-4-induced differentiation of human
blood monocytes toward dendritic-like cells with regulatory
properties. *Polancec DS, *Munic Kos V*, Banjanac M, Vrancic M, Cuzic S,
Belamaric D, Parnham MJ, Polancec D, Erakovic Haber V./J Leukoc Biol/. 2012
91(2):229-43. http://www.ncbi.nlm.nih.gov/pubmed/22131344 [18]
*Anti-inflammatory mechanism of action of azithromycin in LPS-stimulated
J774A.1 cells.* Banjanac M, Munić Kos V, Nujić K, Vrančić M, Belamarić
D, Crnković S, Hlevnjak M, Eraković Haber V. /Pharmacol Res/. 2012
66(4):357-62. http://www.ncbi.nlm.nih.gov/pubmed/22766077 [19]
*Impairment of lysosomal functions by azithromycin and chloroquine
contributes to anti-inflammatory phenotype.* Nujić K, Banjanac M, Munić V,
Polančec D, Eraković Haber V. /Cell Immunol/. 2012
279(1):78-86. http://www.ncbi.nlm.nih.gov/pubmed/23099154 [20]
*Azithromycin distinctively modulates classical activation of human monocytes
in vitro.* Vrančić M, Banjanac M, Nujić K, Bosnar M, Murati T, Munić V,
Stupin Polančec D, Belamarić D, Parnham MJ, Eraković Haber V. /Br J
Pharmacol/. 2012- 165(5):1348-60. http://www.ncbi.nlm.nih.gov/pubmed/21726210
[21]
*Intensity of macrolide anti-inflammatory activity in J774A.1 cells
positively correlates with cellular accumulation and phospholipidosis. Munić
V*, Banjanac M, Koštrun S, Nujić K, Bosnar M, Marjanović N, Ralić J,
Matijašić M, Hlevnjak M, Eraković Haber V. /Pharmacol Res/. 2011
64(3):298-307. http://www.ncbi.nlm.nih.gov/pubmed/21473915 [22]
*Modeling cellular pharmacokinetics of 14- and 15-membered macrolides with
physicochemical properties.* Stepanić V, Koštrun S, Malnar I, Hlevnjak M,
Butković K, Ćaleta I, Dukši M, Kragol G, Makaruha-Stegić O, Mikac L,
Ralić J, Tatić I, Tavčar B, Valko K, Zulfikari S, *Munić V*. /J Med
Chem/. 2011- 54(3):719-33. http://www.ncbi.nlm.nih.gov/pubmed/21207938 [23]
*Characterization of rhodamine-123, calcein and
5(6)-carboxy-2', 7'-dichlorofluorescein (CDCF) export via MRP2 (ABCC2) in
MES-SA and A549 cells. Munić V*, Hlevnjak M, Eraković Haber V. /Eur J
Pharm Sci/. 2011 - 43(5):359-69. http://www.ncbi.nlm.nih.gov/pubmed/21605668
[24]
*Differences in assessment of macrolide interaction with human MDR1 (ABCB1,
P-gp) using rhodamine-123 efflux, ATPase activity and cellular accumulation
assays. Munić V*, Kelnerić Z, Mikac L, Eraković Haber V. /Eur J Pharm
Sci./ 2010 - 41(1):86-95. http://www.ncbi.nlm.nih.gov/pubmed/20621639 [25]
*Cloning and molecular characterization of apical efflux transporters (ABCB1,
ABCB11 and ABCC2) in rainbow trout (Oncorhynchus mykiss) hepatocytes.* Zaja
R, Munić V, Klobucar RS, Ambriović-Ristov A, Smital T. /Aquat Toxicol/.
2008 - 90(4):322-32. http://www.ncbi.nlm.nih.gov/pubmed/19008001 [26]
*Cloning and mRNA expression analysis of an ABCG2 (BCRP) efflux transporter
in rainbow trout (Oncorhynchus mykiss) liver and primary hepatocytes.* Zaja
R, Munić V, Smital T. /Mar Environ Res/. 2008
66(1):77-9. http://www.ncbi.nlm.nih.gov/pubmed/18381223 [27]
*Modulation of neutrophil and inflammation markers in chronic obstructive
pulmonary disease by short-term azithromycin treatment.* Parnham MJ, Culić
O, Eraković V, Munić V, Popović-Grle S, Barisić K, Bosnar M, Brajsa K,
Cepelak I, Cuzić S, Glojnarić I, Manojlović Z, Novak-Mircetić R,
Oresković K, Pavicić-Beljak V, Radosević S, Sucić M. /Eur J Pharmacol/.
2005- 517(1-2):132-43. http://www.ncbi.nlm.nih.gov/pubmed/15964564 [28]
*Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin,
telithromycin, and cethromycin.* Bosnar M, Kelnerić Z, Munić V, Eraković
V, Parnham MJ. /Antimicrob Agents Chemother/. 2005
49(6):2372-7. http://www.ncbi.nlm.nih.gov/pubmed/15917536 [29]
*Azithromycin modulates neutrophil function and circulating inflammatory
mediators in healthy human subjects.* Culić O, Eraković V, Cepelak I,
Barisić K, Brajsa K, Ferencić Z, Galović R, Glojnarić I, Manojlović Z,
Munić V, Novak-Mircetić R, Pavicić-Beljak V, Sucić M, Veljaca M,
Zanić-Grubisić T, Parnham MJ. /Eur J Pharmacol/. 2002
450(3):277-289. http://www.ncbi.nlm.nih.gov/pubmed/12208321 [30]
*The link between met-enkephalin-induced down-regulation of APN activity and
the release of superoxide anion.* Marotti T, Balog T, Munić V, Sobocanec S,
Abramić M. /Neuropeptides/. 2000
34(2):121-8. http://www.ncbi.nlm.nih.gov/pubmed/10985929 [31]
[1] http://www.eu-toxrisk.eu/
[2] https://pubmed.ncbi.nlm.nih.gov/35393121/
[3] https://pubmed.ncbi.nlm.nih.gov/35395240/
[4] https://doi.org/10.1016/j.fct.2022.112842
[5] https://doi.org/10.1007/s00204-020-02970-5
[6] https://pubmed.ncbi.nlm.nih.gov/33085774/
[7] https://www.sciencedirect.com/science/article/pii/S0753332220307757?via%3Dihub
[8] https://pubmed.ncbi.nlm.nih.gov/32423144/
[9] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928787/?report=classic
[10] https://www.ncbi.nlm.nih.gov/m/pubmed/30419273/#fft
[11] https://www.ncbi.nlm.nih.gov/pubmed/29627311
[12] https://www.ncbi.nlm.nih.gov/pubmed/29248446
[13] https://www.ncbi.nlm.nih.gov/pubmed/28410508
[14] http://www.ncbi.nlm.nih.gov/pubmed/24114177
[15] http://www.ncbi.nlm.nih.gov/pubmed/23474356
[16] http://www.ncbi.nlm.nih.gov/pubmed/23199485
[17] http://www.ncbi.nlm.nih.gov/pubmed/22749903
[18] http://www.ncbi.nlm.nih.gov/pubmed/22131344
[19] http://www.ncbi.nlm.nih.gov/pubmed/22766077
[20] http://www.ncbi.nlm.nih.gov/pubmed/23099154
[21] http://www.ncbi.nlm.nih.gov/pubmed/21726210
[22] http://www.ncbi.nlm.nih.gov/pubmed/21473915
[23] http://www.ncbi.nlm.nih.gov/pubmed/21207938
[24] http://www.ncbi.nlm.nih.gov/pubmed/21605668
[25] http://www.ncbi.nlm.nih.gov/pubmed/20621639
[26] http://www.ncbi.nlm.nih.gov/pubmed/19008001
[27] http://www.ncbi.nlm.nih.gov/pubmed/18381223
[28] http://www.ncbi.nlm.nih.gov/pubmed/15964564
[29] http://www.ncbi.nlm.nih.gov/pubmed/15917536
[30] http://www.ncbi.nlm.nih.gov/pubmed/12208321
[31] http://www.ncbi.nlm.nih.gov/pubmed/10985929
Teaching
- Drug Discovery &
- Development – An Industrial Perspective, Drug and Chemical
Target Identification, Pharmacological and Toxicological Experimental Methods
Articles
- Journal article: CHEMOSPHERE. 2024;349:140852
- Journal article: TOXICOLOGY LETTERS. 2023;384:s72-S74
- Article: FOOD AND CHEMICAL TOXICOLOGY. 2022;161:112842
- Article: ARCHIVES OF TOXICOLOGY. 2021;95(2):591-615
- Article: BRITISH JOURNAL OF PHARMACOLOGY. 2021;178(2):363-377
- Article: BIOMEDICINE & PHARMACOTHERAPY. 2020;130:110582
- Article: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. 2019;20(23):E5938-5938
- Article: JOURNAL OF PHARMACEUTICAL SCIENCES. 2019;108(1):652-660
- Article: EUROPEAN JOURNAL OF PHARMACOLOGY. 2018;829:44-53
- Article: CHEMICO-BIOLOGICAL INTERACTIONS. 2018;281:1-10
- Article: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. 2017;133:351-364
- Article: EUROPEAN JOURNAL OF DRUG METABOLISM AND PHARMACOKINETICS. 2014;39(4):263-276
- Article: EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES. 2013;49(2):206-219
- Article: BIOORGANIC AND MEDICINAL CHEMISTRY. 2013;21(1):321-332
- Article: PHARMACOLOGICAL RESEARCH. 2012;66(4):357-362
- Article: PHARMACOLOGICAL RESEARCH. 2012;66(4):332-342
- Article: CELLULAR IMMUNOLOGY. 2012;279(1):78-86
- Article: BRITISH JOURNAL OF PHARMACOLOGY. 2012;165(5):1348-1360
- Article: JOURNAL OF LEUKOCYTE BIOLOGY. 2011;91(2):229-243
- Article: PHARMACOLOGICAL RESEARCH. 2011;64(3):298-307
- Article: EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES. 2011;43(5):359-369
- Article: JOURNAL OF MEDICINAL CHEMISTRY. 2011;54(3):719-733
- Article: EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES. 2010;41(1):86-95
- Article: AQUATIC TOXICOLOGY. 2008;90(4):322-332
- Article: EUROPEAN JOURNAL OF PHARMACOLOGY. 2005;517(1-2):132-143
- Article: ANTIMICROBIAL AGENTS AND CHEMOTHERAPY. 2005;49(6):2372-2377
- Article: EUROPEAN JOURNAL OF PHARMACOLOGY. 2002;450(3):277-289
- Article: NEUROPEPTIDES. 2000;34(2):121-128
- Show more
All other publications
- Corrigendum: BIOCHEMICAL PHARMACOLOGY. 2022;202:115145
- Corrigendum: BIOCHEMICAL PHARMACOLOGY. 2022;202:115144
- Review: BIOCHEMICAL PHARMACOLOGY. 2022;199:115014
- Review: BIOCHEMICAL PHARMACOLOGY. 2022;199:115015
- Review: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. 2020;21(10):E3480-3480
- Published conference paper: MARINE ENVIRONMENTAL RESEARCH. 2008;66(1):77-79