Penny Nymark

Penny Nymark

Research Specialist
Visiting address: Nobels väg 13, 17177 Stockholm
Postal address: C6 Institutet för miljömedicin, C6 Ledningskansliet, 171 77 Stockholm

About me

Research

  • *Selected publications:*

    Wittwehr C, Clerbaux LA, Edwards S, Angrish M, Mortensen H, Carusi A,
    Gromelski M, Lekka E, Virvilis V, Martens M, Bonino da Silva Santos
    LO, *Nymark P. *Why adverse outcome pathways need to be FAIR. [1] ALTEX.
    2023 Aug 1. doi: 10.14573/altex.2307131. Online ahead of print.

    Dumit, V. I., Ammar, A., Bakker, M. I., Bañares, M. A., Bossa, C., Costa,
    A., Cowie, H., Drobne, D., Exner, T. E., Farcal, L., Friedrichs, S., Furxhi,
    I., Grafström, R., Haase, A., Himly, M., Jeliazkova, N., Lynch, I., Maier,
    D., Noorlander, C. W., ... *Nymark, P*. (2023). From principles to reality.
    FAIR implementation in the nanosafety community. [2] /Nano Today/, /51/,
    [101923]. doi: 10.1016/j.nantod.2023.101923

    Grafström R, Haase A, Kohonen P, Jeliazkova N, *Nymark P. *Reply to:
    Prospects and challenges for FAIR toxicogenomics data. [3] Nat Nanotechnol.
    2021 Dec 23. doi: 10.1038/s41565-021-01050-8. Online ahead of print.

    Lynch I, *Nymark P*, Doganis P, Gulumian M, Yoon TH, Martinez DST, Afantitis
    A. Methods, models, mechanisms and metadata: Introducing the Nanotoxicology
    collection at F1000Research. [4] F1000Res. 2021 Nov 24;10:1196. doi:
    10.12688/f1000research.75113.1. eCollection 2021.

    Bossa C, Andreoli C, Bakker M, Barone F, De Angelis I, Jeliazkova N, *Nymark
    P*, Battistelli CL. FAIRification of nanosafety data to improve
    applicability of (Q)SAR approaches: A case study on /in vitro/ Comet assay
    genotoxicity data. [5] Comput Toxicol. 2021 Nov;20:100190. doi:
    10.1016/j.comtox.2021.100190.

    Jeliazkova N, Apostolova MD, Andreoli C, Barone F, Barrick A, Battistelli C,
    Bossa C, Botea-Petcu A, Châtel A, De Angelis I, Dusinska M, El Yamani N,
    Gheorghe D, Giusti A, Gómez-Fernández P, Grafström R, Gromelski M,
    Jacobsen NR, Jeliazkov V, Jensen KA, Kochev N, Kohonen P, Manier N, Mariussen
    E, Mech A, Navas JM, Paskaleva V, Precupas A, Puzyn T, Rasmussen K, Ritchie
    P, Llopis IR, Rundén-Pran E, Sandu R, Shandilya N, Tanasescu S, Haase A,
    *Nymark P.* Towards FAIR nanosafety data. [6]Nat Nanotechnol. 2021 May 20.
    doi: 10.1038/s41565-021-00911-6.

    *Nymark P*, Karlsson HL, Halappanavar S, Vogel U. Adverse Outcome Pathway
    development for assessment of lung carcinogenicity by nanoparticles [7].
    Frontiers in Toxicology, 29 April 2021. doi: 10.3389/ftox.2021.653386

    *Nymark P, * Sachana M, Batista-Leite S, Sund J, Krebs C.E., Sullivan K,
    Edwards S, Viviani L, Willett K, Landesmann B, Wittwehr C. Systematic
    Organization of COVID-19 Data Supported by the Adverse Outcome Pathway
    Framework [8]. Frontiers in Public Health, 19 May 2021, doi:
    10.3389/fpubh.2021.638605

    Halappanavar S, van den Brule S, * Nymark P*, Gaté L, Seidel C, Valentino S,
    Zhernovkov V, Høgh Danielsen P, De Vizcaya A, Wolff H, Stöger T, Boyadziev
    A, Poulsen SS, Sørli JB, Vogel U. Adverse outcome pathways as a tool for the
    design of testing strategies to support the safety assessment of emerging
    advanced materials at the nanoscale. [9] Part Fibre Toxicol. 2020 May
    25;17(1):16. doi: 10.1186/s12989-020-00344-4.

    *Nymark P*, Bakker M, Dekkers S, Franken R, Fransman W, García-Bilbao A,
    Greco D, Gulumian M, Hadrup N, Halappanavar S, Hongisto V, Hougaard KS,
    Jensen KA, Kohonen P, Koivisto AJ, Dal Maso M, Oosterwijk T, Poikkimäki M,
    Rodriguez-Llopis I, Stierum R, Sørli JB, Grafström R. Toward Rigorous
    Materials Production: New Approach Methodologies Have Extensive Potential to
    Improve Current Safety Assessment Practices. [10]Small. 2020
    Feb;16(6):e1904749. doi: 10.1002/smll.201904749. Epub 2020 Jan 8.

    Soeteman-Hernandez LG, Apostolova MD, Bekker C, Dekkers S, Grafström RC,
    Groenewold M, Handzhiyski Y, Herbeck-Engel P, Hoehener K, Karagkiozaki V,
    Kelly S, Kraegeloh A, Logothetidis S, Micheletti C, *Nymark P*, Oomen A,
    Oosterwijk T, Rodríguez-LLopis I, Sabella S, Sanchez Jiménez A, Sips A,
    Suarez-Merino B, Tavernaro I, van Engelen J, Wijnhoven SWP, Noorlander CW.
    Safe innovation approach: Towards an agile system for dealing with
    innovations. [11] Materials Today Communications, Volume 20, 2019, 100548,
    ISSN 2352-4928, doi: 10.1016/j.mtcomm.2019

    Giusti A, Atluri R, Tsekovska R, Gajewicz A, Apostolova MD, Battistelli CL,
    Bleeker EAJ, Bossa C, Bouillard j, Dusinska M, Gómez-Fernández P,
    Grafström R, Gromelski M, Handzhiyski Y, Jacobsen NR, Jantunen P, Jensen KA,
    Mech A, Navas JM, *Nymark P*, Oomen AG, Puzyn T, Rasmussen K, Riebeling C,
    Rodriguez-Llopis I, Sabella S, Riego Sintes J, Suarez-Merino B, Tanasescu S,
    Wallin H, Haase A. Nanomaterial grouping: Existing approaches and future
    recommendations [12]. NanoImpact, Volume 16, 2019, 100182, ISSN 2452-0748,
    doi: 10.1016/j.impact.2019.100182

    *Nymark P*, Kohonen P, Hongisto V, Grafström RC. Toxic and Genomic
    Influences of Inhaled Nanomaterials as a Basis for Predicting Adverse
    Outcome. [13]Ann Am Thorac Soc. 2018 Apr;15(Suppl 2):S91-S97. doi:
    10.1513/AnnalsATS.201706-478MG.

    *Nymark P*, Rieswijk L, Ehrhart F, Jeliazkova N, Tsiliki G, Sarimveis H,
    Evelo CT, Hongisto V, Kohonen P, Willighagen E, Grafström RC. A Data Fusion
    Pipeline for Generating and Enriching Adverse Outcome Pathway Descriptions.
    [14]Toxicol Sci. 2018 Mar 1;162(1):264-275. doi: 10.1093/toxsci/kfx252.

    *Nymark P*, Wijshoff P, Cavill R, van Herwijnen M, Coonen ML, Claessen S,
    Catalán J, Norppa H, Kleinjans JC, Briedé JJ. Extensive temporal
    transcriptome and microRNA analyses identify molecular mechanisms underlying
    mitochondrial dysfunction induced by multi-walled carbon nanotubes in human
    lung cells. [15] Nanotoxicology, 2015. 9(5): p. 624-635. doi:
    10.3109/17435390.2015.1017022

    *Nymark P*, Guled M, Borze I, Faisal A, Lahti L, Salmenkivi K, Kettunen E,
    Anttila S, Knuutila S. Integrative Analysis of microRNA, mRNA and aCGH Data
    Reveals Asbestos-Related Changes in Non-Small Cell Lung Cancer. [16] Genes,
    Chromosom. Cancer, 2011. 50(8):585-97. doi: 10.1002/gcc.20880

    *Nymark P*, Wikman H, Hienonen-Kempas T, Anttila S. Molecular and genetic
    changes in asbestos-related lung cancer [17]. Cancer Lett. 2008. 265(1):1-15.
    Doi: 10.1016/j.canlet.2008.02.043

    [1] https://pubmed.ncbi.nlm.nih.gov/37528748/
    [2] https://doi.org/10.1016/j.nantod.2023.101923
    [3] https://doi.org/10.1038/s41565-021-01050-8
    [4] https://doi.org/10.12688/f1000research.75113.1
    [5] https://doi.org/10.1016/j.comtox.2021.100190
    [6] https://doi.org/10.1038/s41565-021-00911-6
    [7] https://doi.org/10.3389/ftox.2021.653386
    [8] https://doi.org/10.3389/fpubh.2021.638605
    [9] https://pubmed.ncbi.nlm.nih.gov/32450889/
    [10] https://pubmed.ncbi.nlm.nih.gov/31913582/
    [11] https://doi.org/10.1016/j.mtcomm.2019
    [12] https://doi.org/10.1016/j.impact.2019.100182
    [13] https://pubmed.ncbi.nlm.nih.gov/29676641/
    [14] https://pubmed.ncbi.nlm.nih.gov/29149350/
    [15] http://doi.org/10.3109/17435390.2015.1017022
    [16] http://doi.org/10.1002/gcc.20880
    [17] http://doi.org/10.1016/j.canlet.2008.02.043

Teaching

  • I am course leader for the PhD course /Human Cell Culture. Methods and 
    Applications/. (code 3127). I also lead course modules in the Master Program
    in Toxicology, including on bioinformatics and omics, as well as a workshop
    on toxicological high-throughput screening assays and data (ToxCast
    workshop). Furthermore, I provide a number of lectures both at KI and other
    universities and external courses in the areas of human cell culture methods,
    alternative (3R) methods, toxicogenomics and systems toxicology,
    bioinformatics, high-throughput screening approaches, data management (FAIR
    principles), Adverse Outcome Pathways (AOPs) and Safe and Sustainable by
    Design (SSbD).

Articles

All other publications

Grants

  • Swedish Research Council for Health Working Life and Welfare
    1 January 2024 - 31 December 2026
    Research problem and specific questions: Cleaning and disinfection agents are widely used in various occupational settings and a growing body of evidence from observational studies shows this results in lung function impairments. However, mechanisms a behind these effects are yet unclear. This project aims to clarify the risks of lung disease posed by the mixtures in cleaning agents and evaluate the adequacy of applicable regulations. Specifically:Which biomarkers of cell membrane integrity inflammation, toxicity and cell death are activated in in vitro advanced lung mucosa models by cleaning agent exposure?How do responses compare between alveolar and bronchial mucosa models?How do responses compare between exposures to mixtures and ingredients one by one?What are the implications of potential mixture effects for regulatory hazard assessments?Data and method: We will employ systematic literature search strategies and new approach methodologies (NAMs), including advanced multicellular lung mucosa in vitro models and adverse outcome pathways (AOPs). The AOPs will be used to organise existing knowledge and translate experimental findings, such as molecular mechanisms and cellular reactions in vitro, to a human in vivo setting.Plan for project realisation: The project will start with a scoping review to connect mechanistic data to adverse respiratory tract outcomes and map out a tentative AOP network and identify mechanisms, or key events, of particular relevance to pursue experimentally. Next, experimental work on fully formulated products will be performed in multi-cellular human bronchial and alveolar models. To start untangling the mixture effects the third substudy concerns experimental work on single substance exposures. Finally, we will perform case-studies on mixture risk assessment inhalation exposure to cleaning agents.Relevance: The wide-spread use of cleaning agents makes it a chemical risk factor for a broad part of the workforce. A mechanistic understanding is essential for regulatory risk assessment, as are further studies of cleaning agents’ mixture effects and their role in lung disease. Our project is a step in identifying problematic substances and substance combinations in mixtures and lays the foundation for knowledge that can lead to reformulation of cleaning agents into safer alternatives. Our project also contributes to the field of mixture risk assessment, where inhalation exposure of mixtures is under-researched field.

News from KI

Events from KI