Lipo-Group Research Constellation (LGRC)

Denna sida på svenska

The final goal of our research activity is the discovery of biomarkers and therapeutic targets for the diagnosis and treatment of  cardiometabolic diseases by increasing the knowledge on lipoprotein, lipid, and carbohydrate metabolism.

Cardiometabolic diseases (atherosclerotic cardiovascular disease, diabetes mellitus type II, and non alcoholic fatty liver disease) are the first cause of mortality and hospitalization worldwide. Epidemiological studies have shown the complexity of cardiometabolic diseases identifying a large number of risk factors.

The liver is a fundamental organ for the regulation of lipoprotein, lipid, and carbohydrate metabolism, being the center of the physiologic processes that maintain carbohydrate and lipid homehostasis.

The Lipo-Group Research Constellation (LGRC), led by Paolo Parini and Mats Eriksson, merges the efforts and background from various medical specialties (internal medicine, hepatology, gastroenterology, and endocrinology) with the science from genetics, clinical biochemistry, and molecular biology.

The multi-disciplinary expertise and the deep knowledge of human physiology allow LGRC to drive translational pre-clinical and clinical research activities and to intergrated the results into models and hypotheses that are translatable to human condition.

One example of the many research projects that LGRC drives is HUMAN:

HUMAN (Health and the Understanding of Metabolism, Aging and Nutrition, http://www.fp7human.eu) is a consortium with a EU-funded research project that started in October 2013. HUMAN aims to study the function of genetic risk variant associated to metabolic diseases by employing a unique translational model of human glucose and lipid metabolism: mouse with humanised liver and pancreas. Paolo Parini is the coordinator of HUMAN, and with several member of the LGRC actively contribute with a research activity aimed to: 1) characterize the metabolic phenotype of the humanized mice produced within the consortium, specifically by determining whether the liver humanized mouse model recreates the metabolic characteristics of a human liver and by characterizing changes in clinical metabolic parameters of disease and aging; 2) investigate sex related differences in hepatic lipid and lipoprotein metabolism of the liver humanized mice by repopulation of male or female animals with hepatocytes from disease-free women or men; 3) investigate the humanized phenotype of liver-targeted pharmacology, using the oxysterol receptor LXR as a model system; 4) use CRISPR/Cas9 to genetically modify iPSCs carrying risk/protective alleles.

LGRC also offers an unique competence and technological platform to drive studies for: a) pharmacological target validation, b) evaluation of lipid and glucose metabolism, c) detailed characterization of lipoprotein composition, structure and functions

Please contact us for more informations and possible future collaborations! 

Research group leader

Professor/senior physician

Paolo Parini

Phone: +46-(0)8-585 893 10
Organizational unit: Division of clinical chemistry
E-mail: Paolo.Parini@ki.se

Adjunct professor

Mats Eriksson

Organizational unit: Unit for Metabolism
E-mail: Mats.Eriksson@ki.se

Group members

Research assistant

Dilruba Ahmed

E-mail: dilruba.ahmed@ki.se

Associated

Germán Camejo

Organizational unit: Division of clinical chemistry
E-mail: german.camejo@ki.se

Associated

Paolo Garagnani

Organizational unit: Division of clinical chemistry
E-mail: paolo.garagnani@ki.se

Adjunct professor

Eva Hurt-Camejo

Organizational unit: Division of clinical chemistry
E-mail: eva.hurt-camejo@ki.se

Assistant professor

Tomas Jakobsson

Organizational unit: Division of clinical chemistry
E-mail: Tomas.Jakobsson@ki.se

Graduate Student

Karin Littman

Organizational unit: Department of Laboratory Medicine (LABMED), H5
E-mail: karin.littmann@ki.se

Laboratory technician

Lilian Larsson

Organizational unit: Division of clinical chemistry
E-mail: Lilian.Larsson@ki.se

R&D trainee

Mirko Minniti

Phone: +46-(0)8-585 812 90
Organizational unit: Division of clinical chemistry
E-mail: mirko.minniti@ki.se

Biomedical scientist

Maria Olin

Phone: +46-(0)8-585 812 87
Organizational unit: Division of clinical chemistry
E-mail: Maria.Olin@ki.se

Graduate Student

Ahmed Osman

Organizational unit: Division of clinical chemistry
E-mail: osman.ahmed@ki.se

Research coordinator

Matteo Pedrelli

Organizational unit: Department of Laboratory Medicine (LABMED), H5
E-mail: Matteo.Pedrelli@ki.se

Assistant professor

Camilla Pramfalk

Phone: +46-(0)8-524 810 97
Organizational unit: Division of clinical chemistry
E-mail: Camilla.Pramfalk@ki.se

Senior researcher

Knut R. Steffensen

Phone: +46-(0)8-585 812 77
Organizational unit: Division of clinical chemistry
E-mail: Knut.Steffensen@ki.se

Lecturer

Veronika Tillander

Organizational unit: Department of Laboratory Medicine (LABMED), H5
E-mail: Veronika.Tillander@ki.se

Postdoc

Lise-Lotte Vedin

Organizational unit: Division of clinical chemistry
E-mail: Lise-lotte.Vedin@ki.se

Research techniques

  • CRISPR Cas9 gene editing, Lipoproteins isolation and characterization (i.e. D2O-sucrose and KBr gradient ultracentrifugation, native and denatured polyacrylamide gel electrophoresis, size exclusion chromatography, serum and HDL cholesterol efflux capacity measurement, lipoprotein binding to arterial proteoglycans), extraction and quantification of lipids and glycogen in cells and tissues, RNA-DNA extraction and purification, enzymatic and ELISA assays, gene expression, protein expression, cloning, mutagenesis, cell culture, transfections.
  • Work with animal models: quantification of macrophagic reverse cholesterol transport (RCT) in- vivo, glucose and insulin tolerance test, evaluation of atherosclerosis development in the aorta, mouse genotyping, tissue and organ collection, gavage, tail vein injection

External funding

EU Fp7 HUMAN (www.fp7human.eu), Swedish Heart-Lung foundation, AstraZeneca, Swedish Research Council, ALF, SSMF, Moderna

Teaching assignments

BMA undergraduate program, postgraduate courses, medical program, bachelor programs in Biomedicine and Nutrition

Selected publications

Culturing of HepG2 cells with human serum improve their functionality and suitability in studies of lipid metabolism.
Pramfalk C, Larsson L, Härdfeldt J, Eriksson M, Parini P
Biochim. Biophys. Acta 2016 Jan;1861(1):51-59

Lipids around the Clock: Focus on Circadian Rhythms and Lipid Metabolism.
Gnocchi D, Pedrelli M, Hurt-Camejo E, Parini P
Biology (Basel) 2015 Feb;4(1):104-32

Hepatic ACAT2 knock down increases ABCA1 and modifies HDL metabolism in mice.
Pedrelli M, Davoodpour P, Degirolamo C, Gomaraschi M, Graham M, Ossoli A, et al
PLoS ONE 2014 ;9(4):e93552

The oxysterol receptor LXRβ protects against DSS- and TNBS-induced colitis in mice.
Jakobsson T, Vedin L, Hassan T, Venteclef N, Greco D, D'Amato M, et al
Mucosal Immunol 2014 Nov;7(6):1416-28

Deactivating Fatty Acids: Acyl-CoA Thioesterase-Mediated Control of Lipid Metabolism.
Tillander V, Alexson S, Cohen D
Trends Endocrinol. Metab. 2017 Jul;28(7):473-484

Metabolism