

ProPlex Screen

MD1-38

ProPlex is formulated for the crystallization of Protein comPlexes.

MD1-38 is presented as a 96 x 10 mL condition targeted sparse matrix screen.

Features of ProPlex:

- Helps maintain protein-protein interactions
- Reduces solubility of complex.
- Medium and High MW PEGs and lower concentrations specifically for protein complexes..
- pH range from 4.0 8.5 promote stabilization of complexes.

Introduction

Crystallization of protein complexes

Successful crystallization of protein-protein complexes requires conditions to satisfy two independent criteria: solubility of the complex and stability of the complex. Protein-protein interactions are often weak or transient and their satisfaction precludes a number of reagent zones, thus constricting boundaries around which conditions for crystallization of the complex may be found. Compared to comprehensive crystallization databases containing all proteins, fewer complexes crystallize at extreme pH values due to the destabilisation of protein-protein interactions. Protein complexes were also found to crystallize at lower concentrations of precipitant than is generally observed. As a consequence, traditional sparse matrix screens contain many conditions which fall outside these boundaries and therefore can never crystallize intact protein complexes.

Types of precipitants used for protein-protein complex crystallization.

Typical PEG Molecular Weights used in proteinprotein complex crystallization.

Typical pH conditions used for protein-protein complex crystallization.

The protein-complex crystallization database

The protein-complex crystallization database (PCCD) was established by Radaev *et al* (2006). All published protein-protein complex structures were extracted from the PDB, and multi-subunit proteins, such as free antibodies, were excluded. The resulting PCCD contained 659 unique, dissociable protein-protein complexes. They included 155 enzyme-inhibitor complexes, 121 receptor-ligand complexes, 117 cellular protein complexes, 74 antibody-antigen complexes, 71 signal transduction complexes, 52 large, multi-protein complexes such as ribosomes, and 69 other types of protein-protein complexes. Analysis of crystallization conditions in the PCCD enabled the definition of crystallization boundaries specific to protein complexes.

The Development of ProPlex

This *Protein Complex Screen* is a sparse matrix screen containing conditions obtained by cluster-analysis of data from the PCCD. The number of conditions containing each precipitant type is proportional to the number of observed crystallizations in the PCCD: 66 PEG-based, 24 salt-based and 6 organics-based.

Conditions included, contain precipitants at concentrations representative of those within the crystallization space identified from the PCCD. These are on average, lower than the concentrations found in general sparse matrix screens.

Screening for crystallization of protein complexes

Analysis of the PCCD revealed that 96% of the crystallizations used the vapour diffusion method. Crystallization experiments should be set-up in parallel at 4 °C and 23 °C, since the strength of interactions at interfaces protein-protein are temperature dependent. Most protein complexes were crystallized at a concentration between 5 and 20 mg/ml, with 10 mg/ml being the most successful starting concentration.

Careful biophysical characterisation of the sample is recommended in order to confirm the nature and stability of the complex.

Formulation Notes

ProPlex reagents are formulated using ultrapure water (>18.0 M Ω) and are sterile-filtered using 0.22 μ m filters. No preservatives are added. Final pH may vary from that specified on the datasheet.

Protein

Complexes

Soluble

Proteins

Contact Us

Molecular Dimensions will be happy to discuss the precise formulation of individual reagents.

Individual reagents and stock solutions for optimization are available from Molecular Dimensions.

Enquiries regarding ProPlex formulation, interpretation of results or optimization strategies are welcome. Please e-mail, fax or phone your query to Molecular Dimensions.

Contact and product details can be found at www.moleculardimensions.com

References

- 1. Radaev, S., Li, S. and Sun, P. D. (2006) A survey of protein-protein complex crystallizations. *Acta Cryst.* **D62** pp 605-612.
- Radaev & Sun (2002) Crystallization of Proteinprotein complexes. J. Appl. Cryst. 35 pp 674-676.
- 3. Dafforn (2007) So how do you know you have a macromolecular complex? *Acta Cryst.* **D63** pp 17-25.
- Crystallization of Nucleic Acids and Proteins, Edited by A. Ducruix and R. Giegé, The Practical Approach Series, Oxford Univ. Press, 1992.
- 5. Protein Crystallization Techniques Strategies & Tips, Edited by Terese Bergfors, IUL 1999.

ProPlex Screen Conditions 1-48 (Box 1)

MD1-38

				0- 0/ /	
1-1 1-2	0.1 M Calcium acetate hydrate	0.1 M Tris 0.1 M MES	8.0 6.0	25 % v/v 15 % v/v	PEG 350 MME
1-2	0.1 M Lithium chloride	0.1 M Sodium HEPES	7.5	13 % v/v 20 % v/v	
1-3	0.1 W Litilian chonae	0.1 M Tris	8.0	20 % v/v 25 % v/v	
1-4		0.1 M MES	6.5		PEG 500 MME
1-6	0.2 M Sodium chloride	0.1 M Sodium/potassium phosphate	6.5	15 % v/v 25 % w/v	
1-7	0.1 M Ammonium sulfate	0.1 M Tris	7.5	20 % w/v	
1-8	0.2 M Ammonium sulfate	0.1 M Sodium acetate	5.5	-	PEG 2000 MME
1-9	0.2 M Sodium chloride	0.1 M MES	6.0	-	PEG 2000 MME
1-10	0.1 M Potassium chloride	0.1 M Tris	8.0		PEG 2000 MME
1-11		0.1 M Sodium HEPES	7.5	-	PEG 2000 MME
1-12	0.2 M Sodium acetate trihydrate	0.1 M Sodium citrate	5.5	5 % w/v	
1-13	0.2 M Lithium sulfate	0.1 M Tris	7.5	5 % w/v	
1-14	0.1 M Calcium acetate hydrate	0.1 M Sodium acetate	4.5	10 % w/v	
1-15	0.2 M Sodium acetate trihydrate	0.1 M Sodium citrate	5.5	10 % w/v	
1-16	0.2 M Sodium chloride	0.1 M MES	6.5	10 % w/v	
1-17	0.1 M Magnesium chloride hexahydrate	0.1 M Sodium HEPES	7.5	10 % w/v	
1-18		0.1 M Sodium HEPES	7.0	10 % w/v	
1 10			710	-	2-Propanol
1-19	0.2 M Ammonium acetate	0.1 M Sodium acetate	4.0	15 % w/v	•
1-20	0.1 M Magnesium chloride hexahydrate	0.1 M Sodium citrate	5.0	15 % w/v	
1-21		0.1 M Sodium cacodylate	6.0	15 % w/v	
1-22	0.15 M Ammonium sulfate	0.1 M MES	6.0	15 % w/v	
1-23		0.1 M Sodium HEPES	7.0	15 % w/v	
1-24	0.1 M Magnesium chloride hexahydrate	0.1 M Sodium HEPES	7.0	15 % w/v	
1-25	0.15 M Ammonium sulfate	0.1 M Tris	8.0	15 % w/v	
1-26		0.1 M Sodium citrate	4.5	20 % w/v	
1-27	0.2 M Ammonium acetate	0.1 M Sodium acetate	5.0	20 % w/v	
1-28	0.2 M Lithium sulfate	0.1 M MES	6.0	20 % w/v	
1-29		0.1 M Tris	8.0	20 % w/v	
1-30	0.15 M Ammonium sulfate	0.1 M Sodium HEPES	7.0	20 % w/v	
1-31		0.1 M Sodium citrate	5.6	20 % w/v	PEG 4000
				20 % v/v	2-Propanol
1-32	0.2 M Sodium chloride	0.1 M Tris	8.0	20 % w/v	PEG 4000
1-33		0.1 M Sodium cacodylate	5.5	25 % w/v	PEG 4000
1-34	0.15 M Ammonium sulfate	0.1 M MES	5.5	25 % w/v	PEG 4000
1-35		0.1 M Sodium cacodylate	6.5	25 % w/v	PEG 4000
1-36	0.2 M Potassium iodide	0.1 M MES	6.5	25 % w/v	PEG 4000
1-37	0.2 M Sodium chloride	0.1 M Sodium HEPES	7.5	25 % w/v	PEG 4000
1-38		0.1 M MES	6.5	10 % w/v	PEG 5000 MME
				12 % v/v	1-Propanol
1-39	0.1 M Potassium chloride	0.1 M Sodium HEPES	7.0	15 % w/v	PEG 5000 MME
1-40	0.2 M Ammonium sulfate	0.1 M Tris	7.5	-	PEG 5000 MME
1-41	0.1 M Magnesium chloride hexahydrate	0.1 M MES	6.0	8 % w/v	PEG 6000
1-42	0.15 M Sodium chloride	0.1 M Tris	8.0	8 % w/v	PEG 6000
1-43		0.1 M Sodium citrate	5.5	15 % w/v	PEG 6000
1-44	0.1 M Magnesium acetate tetrahydrate	0.1 M Sodium cacodylate	6.5	15 % w/v	PEG 6000
1-45	- · ·	0.1 M MES	6.5	15 % w/v	
				5 % v/v	
1-46	0.1 M Potassium chloride	0.1 M Sodium HEPES	7.5	15 % w/v	
1-47		0.1 M Tris	8.5	15 % w/v	
1-48		0.1 M Tris	8.5	20 % w/v	

Conditions 1-48 (Box 2) **ProPlex Screen MD1-38** Tube # Conc. Salt Conc. Buffer pН Conc. Precipitant 2-1 0.1 M Magnesium acetate tetrahydrate 0.1 M Sodium acetate 4.5 8 % w/v PEG 8000 2-2 8 % w/v PEG 8000 0.1 M Sodium citrate 5.0 2-3 0.2 M Sodium chloride 0.1 M Sodium cacodylate 6.0 8 % w/v PEG 8000 2-4 0.1 M Sodium HEPES 8 % w/v PEG 8000 7.0 2-5 0.1 M Tris 8.0 8 % w/v PEG 8000 12 % w/v PEG 8000 2-6 0.1 M Calcium acetate hydrate 0.1 M Sodium cacodylate 5.5 0.1 M Sodium phosphate 12 % w/v PEG 8000 2-7 6.5 2-8 0.1 M Magnesium acetate tetrahydrate 0.1 M MOPS 7.5 12 % w/v PEG 8000 2-9 0.2 M Sodium chloride 0.1 M Sodium HEPES 7.5 12 % w/v PEG 8000 2-10 0.2 M Ammonium sulfate 0.1 M Tris 8.5 12 % w/v PEG 8000 2-11 0.1 M Sodium citrate 5.0 20 % w/v PEG 8000 0.2 M Ammonium sulfate 2-12 0.1 M MFS 6.5 20 % w/v PEG 8000 2-13 0.1 M Sodium HEPES 7.0 20 % w/v PEG 8000 2-14 0.2 M Lithium chloride 0.1 M Tris 8.0 20 % w/v PEG 8000 2-15 0.1 M Magnesium acetate tetrahydrate 0.1 M MFS 6.5 10 % w/v PEG 10,000 2-16 0.1 M Sodium HEPES 7.0 18 % w/v PEG 12,000 0.1 M Sodium chloride 0.1 M Tris 8 % w/v PEG 20,000 2-17 80 2-18 0.1 M Sodium HEPES 7.0 15 % w/v PEG 20,000 2-19 0.5 M Ammonium sulfate 0.1 M MES 6.5 2-20 1.0 M Ammonium sulfate 0.1 M Sodium acetate 5.0 2-21 1.0 M Ammonium sulfate 0.1 M MES 6.5 2-22 1.0 M Ammonium sulfate 0.1 M Tris 8.0 0.1 M Sodium acetate 2-23 1.5 M Ammonium sulfate 5.0 2-24 1.5 M Ammonium sulfate 0.1 M Sodium HEPES 7.0 2-25 1.5 M Ammonium sulfate 0.1 M Tris 8.0 2-26 2.0 M Ammonium sulfate 0.1 M Sodium acetate 5.0 0.1 M Sodium HEPES 2-27 2.0 M Ammonium sulfate 7.0 2-28 2.0 M Ammonium sulfate 0.1 M Tris 8.0 2-29 1.0 M Ammonium sulfate 0.1 M Sodium HEPES 7.0 1.0 M Potassium chloride 2-30 2.0 M Sodium formate 0.1 M Sodium acetate 5.0 3.0 M Sodium formate 0.1 M Tris 7.5 2-31 0.8 M Sodium/potassium phosphate 7.5 2-32 2-33 1.3 M Sodium/potassium phosphate 7.0 2-34 1.6 M Sodium/potassium phosphate 6.5 2-35 1.0 M Sodium acetate trihydrate 0.1 M Sodium HEPES 7.5 2-36 1.0 M Sodium citrate tribasic dihydrate 0.1 M Sodium HEPES 7.0 2.0 M Sodium chloride 0.1 M Sodium citrate 2-37 6.0 2-38 1.0 M Lithium sulfate 0.1 M MES 6.5 2-39 1.6 M Lithium sulfate 0.1 M Tris 8.0 2-40 1.4 M Sodium malonate dibasic monohydrate 6.0 2-41 1.2 M Potassium sodium tartrate tetrahydrate 0.1 M Tris 8.0 2-42 1.6 M Magnesium sulfate heptahydrate 0.1 M MFS 6.5 2-43 0.1 M Sodium acetate 5.0 2 % w/v PEG 4000 15 % v/v MPD 2-44 0.05 M Calcium acetate hydrate 0.1 M Sodium cacodylate 6.0 25 % v/v MPD 2-45 0.1 M Imidazole 7.0 50 % v/v MPD 2-46 0.05 M Magnesium chloride hexahydrate 0.1 M MFS 6.5 5 % w/v PEG 4000 10 % v/v 2-Propanol 2-47 0.2 M Ammonium acetate 0.1 M Sodium HEPES 7.5 25 % v/v 2-Propanol 2-48 0.1 M Sodium chloride 0.1 M Tris 8.0 15 % v/v Ethanol 5%v/v MPD

Abbreviations:

Sodium HEPES; N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid Sodium Salt, MES; 2-(N-morpholino)ethanesulfonic acid, MME; Monomethylether, PEG; Polyethylene glycol, Tris; 2-Amino-2-(hydroxymethyl)propane-1,3-diol, MOPS; 3-(N-Morpholino)-propanesulfonic acid.

Manufacturer's safety data sheets are available from our website or by scanning the QR code here:

Ordering details:					
Catalogue Description		Catalogue Code			
ProPlex	(96 x 10 mL kit)	MD1-38			
ProPlex HT-96	(96 x 1 mL)	MD1-42			
Eco Screen versions ProPlex	(96 x 10 mL kit)	MD1-38-ECO			
ProPlex HT-96	(96 x 1 mL)	MD1-42-ECO			
Single Reagents					
ProPlex ProPlex HT-96	(100 mL) (100 mL)	MDSR-38 - tube number MDSR-42 - well number			
For ProPlex ™ stock reage	nts visit our Optimization	page on our website.			