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About me

Background in mathematical statistics.

PhD from KI in 2013.

Senior lecturer in biostatistics at MEB.

Research interest in survival analysis and cancer epidemiology.

Mostly population-based studies on cancer patient survival, both
applications and method development.
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Overview

Short introduction to survival analysis and Cox proportional
hazards model.

Introduction to flexible parametric models in survival analysis as
an alternative to the Cox model.

Discuss the importance of modelling non-proportional hazards
and how this can be done within the flexible parametric
approach.

Show the use of the models in Stata, using the stpm2 command.

Examples of ways of presenting results from survival data using
flexible parametric survival models.
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Why do we need survival analysis?

The characteristic that complicates the use of standard
statistical methods is censoring - unobserved values of the
response measurement of interest.

Censoring leads to differences in follow-up time between
individuals.

The main message is that, in survival analysis, the outcome has
two dimensions – the event indicator and the time at risk.
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Why do we need survival analysis?

What we would like is some measure of the risk of an event
adjusted for the fact that individuals were at risk for different
lengths of time.

Methods used for making inference about proportions (e.g.,
logistic regression) are only appropriate when all individuals have
the same time at risk. This is typically not the case when we
have survival data.

If, however, individuals are at risk for differing lengths of time we
use ‘person-time’ as the denominator and estimate the event
rate (e.g. mortality rate).

event rate =
number of events

person-time at risk
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The Cox Model

The Cox proportional hazards model is by far the most common
regression model used in survival.

h(t) = h0(t) exp (βX )

ln(h(t)) = ln(h0(t)) + βX

The quantities estimated from a Cox model are (log) hazard
ratios.

The baseline hazard, h0(t) is not estimated from a Cox model

The advantage of this is that one does not need to make
(parametric) assumptions about the shape of the baseline hazard
function. The disadvantage is that the underlying shape of the
hazard function is often ignored.
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The Cox Model

Let’s look at an example. We are interested in comparing the
cause-specific mortality for colon cancer patients diagnosed in
two calendar periods, 1975-1984 and 1985-1994.
-----------------------------------------------------------

_t | Haz. ratio Std. err. P>|z| 95% CI

----------------------------------------------------------

1985-1994 | .8487157 .0202711 0.000 .8099006 .8893909

-----------------------------------------------------------

The Cox model automatically adjusts for the underlying
time-scale, even though the baseline is not estimated.

The mortality rate for those diagnosed in the later calendar
period is 15% lower than for those diagnosed in earlier period.

The HR is the same across time, although the underlying rates
can differ across time.
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The Cox Model

We can also include other covariates.
-----------------------------------------------------------

_t |Haz. ratio Std. err. P>|z| 95% CI

-----------------------------------------------------------

1985-1994 | .8797365 .0210338 0.000 .839462 .9219432

|

stage |

Regional | 2.25628 .0933739 0.000 2.080496 2.446916

Distant | 8.022359 .2377227 0.000 7.569703 8.502082

-----------------------------------------------------------

The Cox model includes the covariates calendar period and stage
at diagnosis (localised/regional metastasis/distant metastasis).

However, also adjusts for the underlying time-scale.

The HR of 0.88 is the same within each stage and across time.
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The Cox Model

The crucial assumption of the Cox model is that the estimated
parameters are not associated with time. In other words, any
hazard ratio estimated from the model is assumed not to vary
over follow-up time, i.e we assume proportional hazards.

If you are only interested in the relative effect of a covariate on
the hazard rate, the assumption of proportional hazards is
reasonable then the Cox model is probably the most appropriate
model.

However, whenever we estimate a relative effect we should ask
“relative to what?”

Also, the proportional hazards assumption is often not valid.
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How to allow for non-proportional hazards

There are several ways, but I think the easiest way is to include
interaction between the covariate and the time-scale.

Non-proportional hazards means that the effect of a covariate
differs across time.

This is the same as interaction, or effect modification, with time.

Compare to what you would do if the effect of calendar period
would be different for different stages at diagnosis. You would
include an interaction.
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Why Parametric Models

We have the Cox model so why use parametric models?

Parametric Models have advantages for

Prediction.
Extrapolation.
Quantification (e.g., absolute and relative differences in risk).
Modelling time-dependent effects.
Understanding.
Complex models in large datasets (time-dependent effects /
multiple time-scales)

The estimates we get from flexible parametric survival models
are incredibly similar to those obtained from a Cox model.
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Flexible parametric survival models

In Cox regression the baseline hazard is not estimated.

Many parametric models make strong assumptions about the
baseline which might not be plausible in many settings.

Flexible parametric models are an alternative, using splines to
explicitly model the baseline hazard.

Splines are a way of modeling continuous variables in a flexible
way.

By modelling the baseline it is easier to plot and make different
types of predictions.

Also easier to allow for non-proportional hazards, since it is an
interaction.
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Splines

Flexible mathematical functions defined by piecewise
polynomials.

Used in regression models for non-linear effects

The points at which the polynomials join are called knots.

Constraints ensure the function is smooth.

The most common splines used in practice are cubic splines.

However, splines can be of any degree, n.

Function is forced to have continuous 0th, 1st and 2nd

derivatives.
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Piecewise hazard function
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No Continuity Corrections
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Function forced to join at knots
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Continuous first derivative
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Continuous second derivative
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Flexible parametric survival model

The model can be written as:

ln(H(t)) = s(ln t; γ0,K ) + βx

where K is the number of knots.

Modelling on the hazard scale requires computationally intensive
numerical integration

Another potential problem is that many parameters might be
needed, since the hazard function can have take any shape. The
flexible parametric survival model is instead using the cumulative
hazard, which is an increasing function.

Parameter estimates are still interpreted as hazard ratios (if a
PH model).

Easy to transform to the survival or hazard scale.

Therese M-L Andersson Flexible Parametric Survival Models 21/02/2023 CBB Seminar 20



Flexible parametric survival model

The model shown on the previous slide is a proportional hazards
model.

Non-proportional hazards models (time-dependent effects) can
be modeled by including interactions between covariates and
splines for time.

ln(H(t)) = s(ln t; γ0,K ) + βx+
D∑
j=1

s(ln t; γj ,Kj) ∗ xj

where D is the number of covariates with non-proportional
hazards and Kj is the number of knots for each interaction.

Therese M-L Andersson Flexible Parametric Survival Models 21/02/2023 CBB Seminar 21



Flexible parametric survival model

Let’s again revisit the example of colon cancer.

We will focus on the HR of cancer-specific death, comparing the
two calendar periods. Adjusting for stage at diagnosis.

First a flexible parametric model with proportional hazards.

Then a flexible parametric model allowing for non-proportional
hazards for stage, i.e. including an interaction between time and
stage.
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Flexible parametric survival model

. stpm2 year8594 i.stage, scale(hazard) df(5) eform

Log likelihood = -17317.704 Number of obs = 13,208

--------------------------------------------------------------------------

| exp(b) Std. Err. z P>|z| [95% Conf. Interval]

--------------------------------------------------------------------------

xb |

1985-1994 | .8838128 .0211523 -5.16 0.000 .8433125 .9262582

|

stage |

Regional | 2.260989 .0935674 19.71 0.000 2.084841 2.452021

Distant | 8.249828 .2439361 71.37 0.000 7.785313 8.74206

|

_rcs1 | 3.150462 .0371294 97.37 0.000 3.078524 3.224082

_rcs2 | 1.302572 .0120809 28.50 0.000 1.279108 1.326467

_rcs3 | .9965837 .0059341 -0.57 0.565 .9850207 1.008282

_rcs4 | 1.048574 .0037925 13.11 0.000 1.041167 1.056034

_rcs5 | 1.022945 .0028764 8.07 0.000 1.017323 1.028598

_cons | .1395332 .0040286 -68.21 0.000 .1318566 .1476567

--------------------------------------------------------------------------
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Flexible parametric survival model

Patients diagnosed in the later calendar period have 12% lower
cancer-specific mortality compared to earlier calendar period,
after controlling for stage at diagnosis (and the underlying time
scale), and this difference is assumed be the same for all stages.

Patients with regional metastases have more than 2 times the
mortality of patients with localised stage, after controlling for
calendar period (and the underlying time scale), and the effect is
assumed to be the same within both calendar periods.

Patients with distant metastases have more than 8 times the
mortality of patients with localised stage, after controlling for
calendar period, and the effect is assumed to be the same within
both calendar periods.

The rest of the parameters are for the splines, and they are not
interpreted one by one. However, together they give the function
of the baseline.
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Flexible parametric survival model
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Flexible parametric survival model
. stpm2 year8594 stage2 stage3, scale(hazard) df(5) ///

tvc(stage2 stage3) dftvc(3) eform

Log likelihood = -17132.061 Number of obs = 13,208

----------------------------------------------------------------------------

| exp(b) Std. Err. z P>|z| [95% Conf. Interval]

----------------------------------------------------------------------------

xb |

1985-1994 | .8864017 .0212132 -5.04 0.000 .8457845 .9289694

stage2 | 1.904373 .1029325 11.92 0.000 1.712947 2.11719

stage3 | 7.669099 .2661191 58.71 0.000 7.164857 8.208829

_rcs1 | 2.720272 .0693896 39.23 0.000 2.587615 2.85973

_rcs2 | 1.072641 .0178232 4.22 0.000 1.038271 1.108149

_rcs3 | .9587595 .0098322 -4.11 0.000 .9396812 .9782252

_rcs4 | 1.046235 .0055504 8.52 0.000 1.035413 1.057171

_rcs5 | 1.024975 .0028437 8.89 0.000 1.019417 1.030564

_rcs_st21 | 1.369303 .0736305 5.85 0.000 1.232334 1.521495

_rcs_st22 | 1.130488 .0418797 3.31 0.001 1.051315 1.215625

_rcs_st23 | 1.142751 .0245353 6.21 0.000 1.09566 1.191865

_rcs_st31 | 1.126492 .032725 4.10 0.000 1.064144 1.192493

_rcs_st32 | 1.337784 .0264739 14.71 0.000 1.28689 1.390691

_rcs_st33 | 1.034256 .0130236 2.67 0.007 1.009043 1.0601

_cons | .1445927 .0048611 -57.52 0.000 .1353723 .154441

----------------------------------------------------------------------------
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Flexible parametric survival model

Patients diagnosed in the later calendar period have 11% lower
cancer-specific mortality compared to earlier calendar period,
after controlling for stage at diagnosis with non-proportional
hazards (and the underlying time scale), and this difference is
assumed be the same for all stages.

Since stage is allowed to have non-proportional hazards, i.e. an
interaction between stage and the time-scale, the HR changes
over time, and is not one number found in the output.

However, the HR for stage can be plotted as a function of time
(see later example).
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Flexible parametric survival model
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Flexible parametric survival model

Since the baseline hazard is estimated as a continuous function
in the flexible parametric survival model it is easy to present
results using graphs, and to present results on the hazard scale,
as hazard ratios, or the survival scale.

This is illustrated in the following graphs.

A flexible parametric survival model fitted to data on breast
cancer patients in England, with breast cancer death as the
outcome.

The variable of interest is deprivation status, and results are
shown for the lowest and highest group.
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Flexible parametric survival model
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Thinner lines are predictions from proportional hazards model
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Flexible parametric survival model
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Flexible parametric survival model
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Flexible parametric survival model
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Flexible parametric survival model
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Flexible parametric survival model

A few examples of other measures/extensions

Cumulative incidence within a competing risks setting

Marginal measures, e.g. marginal survival

Restricted mean survival time

Life expectancy and loss in life expectancy

Relative survival models (excess mortality)
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Summary, flexible parametric model

Hazard ratios are very similar to hazard ratios from a Cox model.

The time-scale is included as a continuous variable using splines.

Since the baseline hazard is modelled it is easy to include
non-PH by including interactions with time.

Easy to present results, both on absolute and relative scales,
using graphs.

The parametric approach enables predictions and extrapolations.

Thank you
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