The International Consensus Statement on Attention Deficit Hyperactivity Disorder: Diagnosis and Treatment

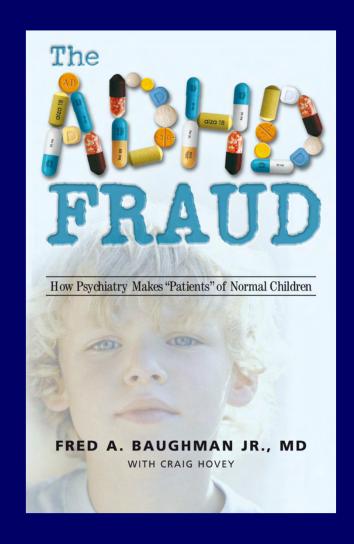
Stephen V. Faraone, Ph.D.

President, World Federation of ADHD
Distinguished Professor
Departments of Psychiatry & of Neuroscience
and Physiology
SUNY Upstate Medical University
@StephenFaraone

Why do We Need an International Consensus Statement?

We need an international consensus statement to correct misconceptions about ADHD that stigmatize affected people, reduce the credibility of caregivers and limit access to treatment

The Truth About


DOES

Attention Deficit and Hyperactivity Disorder

NOT

RICHARD SAUL, M.D.

EXIST.

TIME OPINION • ADHD

Doctor: ADHD Does Not Exist

Big Pharma's Manufactured Epidemic: The Misdiagnosis of ADHD

Investigative journalist Alan Schwarz sounds the alarm

SCIENTIFIC AMERICAN_®

By Gareth Cook on October 11, 2016

Stigma Reduces Access to Evidence-Based Treatments

- In 2020, the World Health Organization decided to exclude methylphenidate from its Essential Medicines List for Children.
- An international team wrote a letter of complaint and, this year, filed a formal appeal.
- In 2021, WHO rejected the appeal stating that the first line treatment for ADHD in WHO guidelines are "environmental, behavioural and psychosocial" even though the evidence basis for these treatments is weak and they are not widely available, especially in low- and middle-income countries

Steering Committee for the ICS ADHD

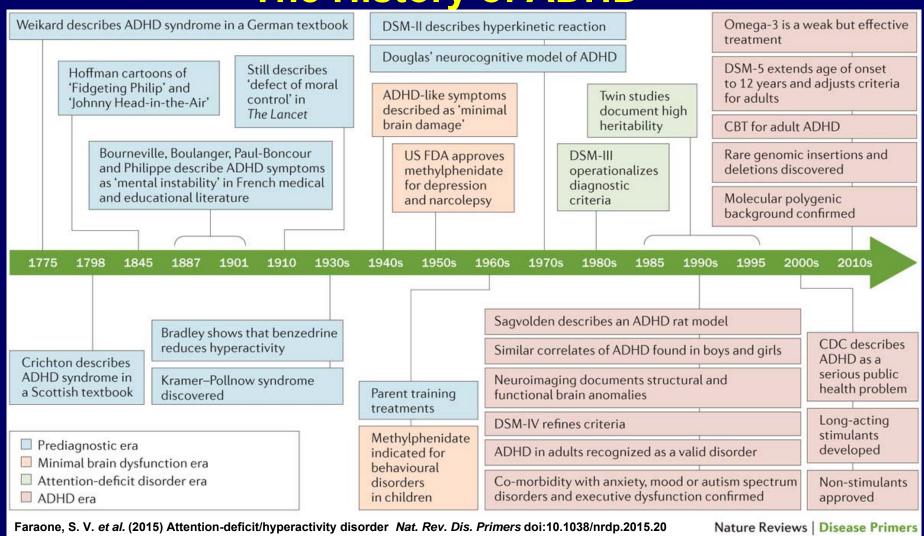
- World Federation of ADHD
- European Network for Hyperkinetic Disorders (Eunethydis)
- American Professional Society of ADHD and Related Disorders
- Canadian ADHD Resource Alliance
- Asian Federation of ADHD
- Latin American League of ADHD
- Australian ADHD Professionals Association
- Israeli Society of ADHD
- Saudi ADHD Society

From www

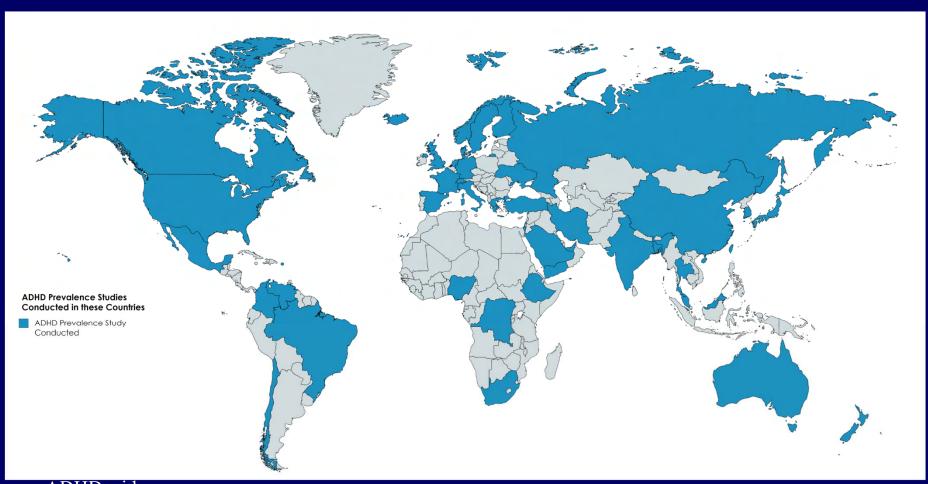
- Neurodevelopmental Disorders Across Lifespan section of the European Psychiatric Association
- ADHD Guidelines Group of the Association of Medical Scientific Societies in Germany
- ADHD Network of European College of Neuropsychopharmacology
- Chinese Society of Child and Adolescent Psychiatry
- ADHD Section of the World Psychiatric Association

The SC recommended authors. MDs and PhDs Represented

Home Countries of Steering Committee and Authors Suggested by Steering Committee (Total = 77)


The ICS ADHD: Inclusion Criteria

- The ICS ADHD records evidenced-based conclusions supported by:
 - meta-analyses.
 - very large studies (N >2,000)


Three Major Myths about ADHD

- 1. It was exported to the world by the USA
- 2. It is a recent invention
- 3. It medicalizes normal behaviors

The History of ADHD

Countries Providing Data about the Prevalence of ADHD

Does ADHD "Medicalize" Normal Behaviors?: Real World Outcomes

- Low quality of life
- Substance use disorders
- Accidental injuries
- Educational underachievement
- Unemployment
- Gambling
- Teenage pregnancy
- Difficulties socializing
- Delinquency and Criminality
- Suicide, and premature death.

What Does the ICS ADHD Tell us About Diagnosing ADHD?

Main Features of ADHD Diagnosis

(American Psychiatric Association, 2013 & 2 other sources)

- 1) The presence of **developmentally inappropriate levels** of hyperactive-impulsive and/or inattentive symptoms for at least 6 months.
- 2) Symptoms occur in **different settings** (e.g., home and school).
- 3) Symptoms cause **impairments** in living.
- 4) Some symptoms and impairments first occur in early to mid-childhood.
- 5) No other disorder better explains the symptoms.

Association between
ADHD & other Disorders

(Bernardi et al. Psychol Med. 2012 & 6 other

		General
	ADHD	population
	(n = 807, 2.51%)	(<i>n</i> = 33 846, 97.49 %)
Any psychiatric disorder	94.98 (92.78–96.54)	64.54 (63.22–65.84)
Any Axis I disorder	92.64 (90.22–94.50)	61.95 (60.52–63.36)

At a recent meeting with my psychologist he told 36-23.918-6.61) clinic me that in a few years time there will be no point in 5-3.60) often continuing my medication because as someone with .29-28.21) psycl 89-15.36) depre ADHD goes into their mid 20's ADHD "swaps" for 8-6.38) 7-7.64spect a different mental disorder and the ADHD 5-3.33disor symptoms go away. 72-21.227-3.17

disorders, and substance use disorders. Their presence does not rule out a diagnosis of ADHD.

	,	,
Schizotypal	22.42 (19.04–26.21)	3.46 (3.19-3.75)
Narcissistic	25.16 (21.82–28.83)	5.69 (5.31-6.10)
Borderline	33.69 (29.90–37.71)	5.17 (4.83-5.54)
Histrionic	10.74 (8.34–13.72)	1.57 (1.42-1.74)
Antisocial	18.86 (15.80–22.35)	3.46 (3.16–3.78)

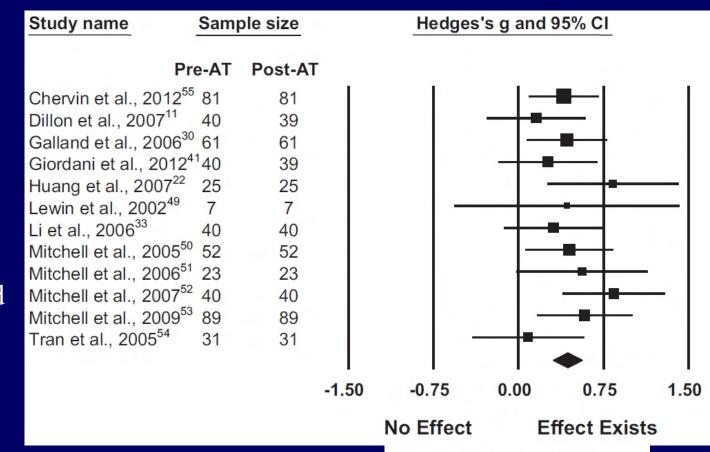
Genetic Associations Between ADHD and other Disorders

(Yao et al. Biol Psychiatry. 2019, Faraone & Larson, Mol Psychiatry. 2018 & 14 more sources)

Family, twin, and DNA studies show that genetic and environmental influences are partially shared between ADHD and many other psychiatric and somatic disorders.

ADHD & Sleep-Disordered Breathing (SDB)

(Sedky et al. Sleep Medicine Reviews. 2014)

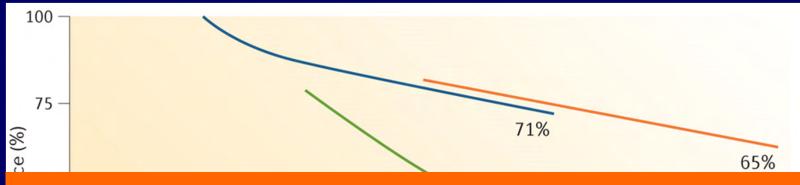

A meta-analysis of 18 studies with more than 2,500 children and adolescents revealed that children suffering from SDB are at increased risk of presenting with symptoms of ADHD such as inattention and hyperactivity.

Study name	Samp	le size		Hedges's	s g and 95	5% CI	
C	linical	Control					
Barnes et al., 2012 ⁶⁴	14	14			-	-	
Beebe et al, 2010 ⁶⁵	126	37			—	⊢	
Blunden et al., 2000 ⁵⁶	16	16			\vdash	-	
Bourke et al., 2011 ⁵⁷	99	35				-	
Chevrin et al., 2001 ¹⁵	59	54			-		
Chevrin et al., 2006 ⁴⁰	40	27				-	
Cooper et al., 200480	18	20			_	_	
Gallard et al., 2001 ¹⁶	28	28			-	-	
Golan et al., 2004 ⁵⁹	34	32			—	_	
Gottlieb et al., 2004 ⁵⁸	61	144			-■	⊢	
Huang et al., 2004 ¹²	88	27				-	
Kaemingk et al., 2003	⁴⁸ 77	69		0.0	-		
Landau et al., 2012 ⁶⁰	68	36			- ■		
Lewin et al., 2002 ⁴⁹	21	10				-	
Miano et al., 2011 ⁶¹	44	60				-	-
O'Brien et al, 2004 ¹³	100	49			+=	-	
Rosen et al., 2004 ⁴⁵	121	708			-		
Ting et al., 2011 ⁶³	128	10					
			-2.50	-1.25	0.00	1.25	2.50
				No Relation	Rela	ation Exist	s

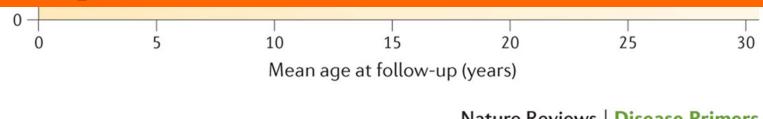
ADHD & Sleep-Disordered Breathing (SDB)

(Sedky et al. Sleep Medicine Reviews. 2014)

- Some forms of SDB can be treated by removing the adenoids and tonsils to relieve the obstruction to breathing
- Adenotonsillectomy (AT) reduces symptoms of ADHD with a standardized mean difference of 0.43.



From www.ADHDevidence.org


Standardized Mean Difference

The Prevalence of ADHD Declines with Age

(Faraone, et al. Nature Reviews Disease Primers 2015)

My psychiatrist told me yesterday that as a middle-aged adult, I don't have ADHD because "kids grow out of it," and just prescribed additional antidepressants.

Nature Reviews | Disease Primers

Clinical Features Associated with ADHD

(Katusic et al. J Dev Behav Pediatr. 2011 & Rommelse et al. Br J Psychiatry. 2017)

ADHD impairs the functioning of highly intelligent people, so the disorder can be diagnosed in this group. A population-based birth cohort study of over <u>5,700 children</u> found no significant differences among children with high, average, or low IQ and ADHD in median age at which ADHD criteria were met, rates of learning disorders, psychiatric disorders, and substance abuse, and rates of stimulant treatment.

Objective Tests Cleared by the US FDA for ADHD

The Test of Variables of Attention (T.O.V.A.R)

An FDA My father said this about my diagnosis" Your psychiatrist is rushing to the conclusion, I don't think you need medications, I think it is a problem of studying habits.... If it were a neurological problem, then why didn't your psychiatrist do a brainscan or something?

ADHD NEWS & RESEARCH

FDA-Cleared Diagnostic Tool May Improve Speed, Accuracy of ADHD Diagnoses, Study Finds

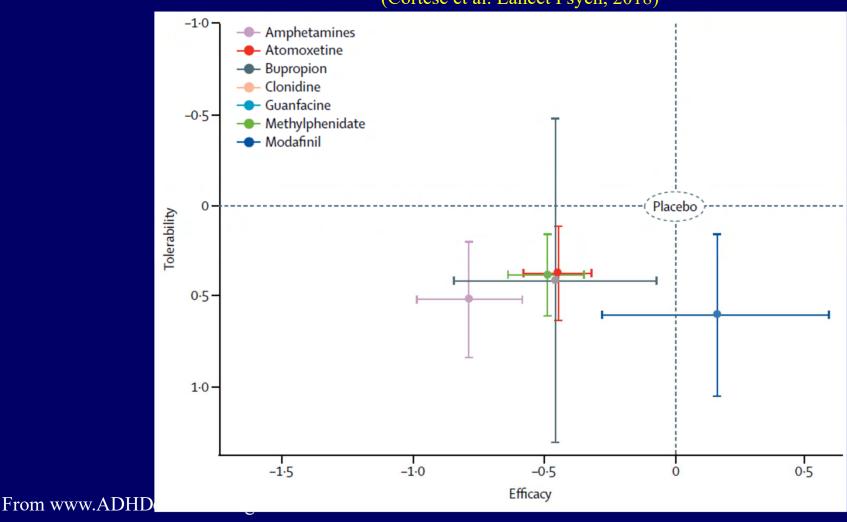
A randomized, controlled study found that a computerized tool called ObTest may make it easier for clinicians to accurately diagnose or rule out ADHD in fewer office visits.

No objective test can confirm or rule out the diagnosis of ADHD

I went to a neurofeedback practitioner who gave me a handheld device with flashing lights to test for ADHD - I had to press a button for specific flashes. Because I did well on that task, she said I didn't have ADHD. But that type of task is not my problem, paperwork is my problem. She told me I have alpha ADD or Alpha wave ADD. Is there such a thing?

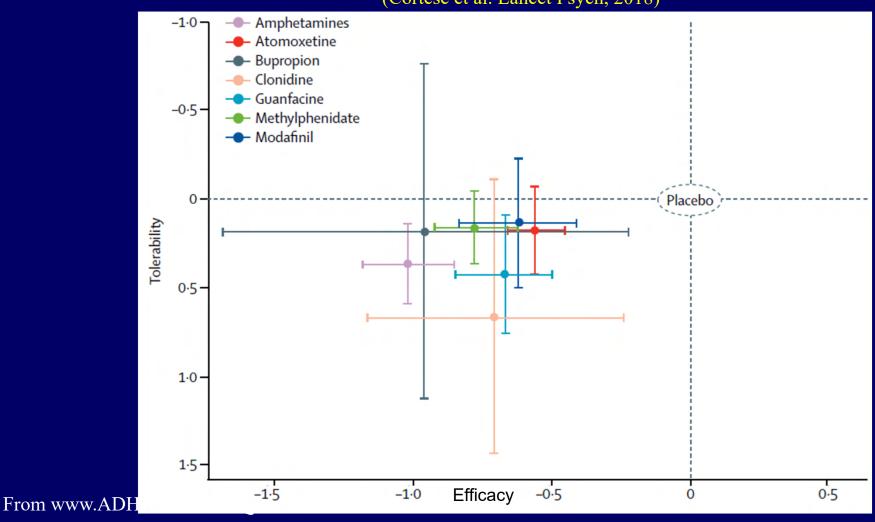
My doctor wants me to take a 20-minute QB test before diagnosis, but I am concerned that my test-taking aptitude will somehow muddle the results.

GET ADHD MEDICATION AT 33 Source: Anonymous Reddit user with ADHD IT @\$%! ING WORKS


is About

From www.ADHDevidence.org

What Do


Efficacy & Tolerability of ADHD Medications: Adults

(Cortese et al. Lancet Psych, 2018)

Efficacy & Tolerability of ADHD Medications: Children & Adolescents

(Cortese et al. Lancet Psych, 2018)

Methylphenidate Use & Emotional Dysregulation

(Lenzi et al. Neuroscience & Biobehavioral Reviews. 2018)

				Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Reimherr 2007	-0.7	0.22	5.2%	-0.70 [-1.13, -0.27]	
Wender 1985	-0.63	0.27	3.7%	-0.63 [-1.16, -0.10]	
Marchant 2011	-0.62	0.31	3.0%	-0.62 [-1.23, -0.01]	
Wender 2011	-0.62	0.14	9.8%	-0.62 [-0.89, -0.35]	-
Goodman 2017	-0.41	0.117	12.0%	-0.41 [-0.64, -0.18]	
Medori 2008	-0.31	0.096	14.4%	-0.31 [-0.50, -0.12]	
Jain 2007	-0.31	0.22	5.2%	-0.31 [-0.74, 0.12]	
Retz 2012	-0.31	0.15	9.0%	-0.31 [-0.60, -0.02]	
Rosler 2010	-0.31	0.11	12.7%	-0.31 [-0.53, -0.09]	
Philipsen 2015	-0.3	0.15	9.0%	-0.30 [-0.59, -0.01]	
Wigal 2016	-0.17	0.21	5.6%	-0.17 [-0.58, 0.24]	
Tenenbauam 2002	0.03	0.24	4.6%	0.03 [-0.44, 0.50]	
Biederman 2011	0.17	0.21	5.6%	0.17 [-0.24, 0.58]	
Total (95% CI)				-0.34 [-0.45, -0.23]	•
Heterogeneity. Tau2 =	0.01 ; $Chi^2 = 18.23$, df	= 12 (P	= 0.11);	$1^2 = 34\%$	-1 -0.5 0 0.5 1
Test for overall effect:	Z = 6.03 (P < 0.00001)			Favours methylphenidate Favours placebo

Lisdexamfetamine Use & Emotional Dysregulation

(Lenzi et al. Neuroscience & Biobehavioral Reviews. 2018)

				Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Waxmonsky 2014	-0.81	0.44	5.7%	-0.81 [-1.67, 0.05]	
Adler 2013	-0.46	0.16	29.6%	-0.46 [-0.77, -0.15]	
DuPaul 2012	-0.24	0.06	64.7%	-0.24 [-0.36, -0.12]	-
Total (95% CI)			100.0%	-0.34 [-0.55, -0.12]	•
Heterogeneity: Tau2 =	= 0.01; Chi ² = 3.16, df =	2 (P	= 0.21); 19	2 = 37%	1 45 4 45
Test for overall effect:	Z = 3.09 (P = 0.002)				Favours lysdexamfetamine Favours placebo

Atomoxetine Use & Emotional Dysregulation

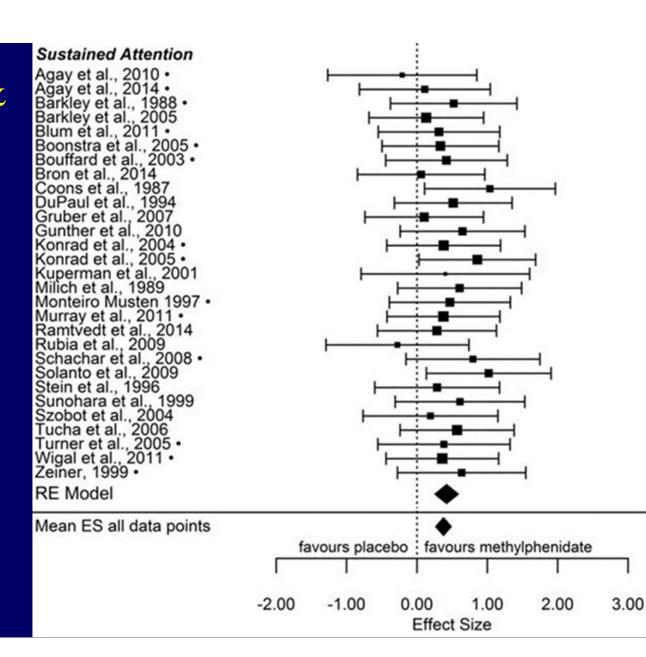
(Lenzi et al. Neuroscience & Biobehavioral Reviews. 2018)

Study or Subgroup	Std. Mean Difference	SE		Std. Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% CI
Goto 2017	-0.33	0.1	23.5%	-0.33 [-0.53, -0.13]	
Brown 2011	-0.33	0.1	23.5%	-0.33 [-0.53, -0.13]	
Robison 2008	-0.31	0.2	5.9%	-0.31 [-0.70, 0.08]	
Adler 2014b	-0.2	0.1	23.5%	-0.20 [-0.40, -0.00]	
Adler 2014a	-0.1	0.1	23.5%	-0.10 [-0.30, 0.10]	
Total (95% CI)			100.0%	-0.24 [-0.34, -0.15]	•
Heterogeneity: Tau2 =	: 0.00; Chi ² = 3.86, df =	4 (P	= 0.43);	$ ^2 = 0\%$	-0.5 -0.25 0 0.25 0.5
	Z = 5.03 (P < 0.00001)				-0.5 -0.25 0 0.25 0.5 Favours atomoxetine Favours placebo

Methylphenidate Use & Effects on Executive Functioning

(Tamminga et al. Psychol Med. 2016)

A meta-analysis of methylphenidate treatment for ADHD found moderate improvements in response inhibition (25 studies, 787 participants).


RE Model

Response Inhibition Aron et al., 2003 Barkley et al., 1988 * Bedard et al., 2003 Biederman et al., 2011 Boonstra et al., 2005 Bouffard et al., 2003 Coghill et al., 2007 Cubillo et al., 2014a Pliszka et al., 2007 Rubia et al., 2011 Schachar et al., 2008 * Scheres et al., 2003 amm & Carlson, 2007 Tannock et al., 1995 Wilson et al., 2006 Mean ES all data points favours placebo : favours methylphenidate -2.00-1.000.00 1.00 2.00 3.00 Effect Size

Methylphenidate Use & Effects on Executive Functioning

(Tamminga et al. Psychol Med. 2016)

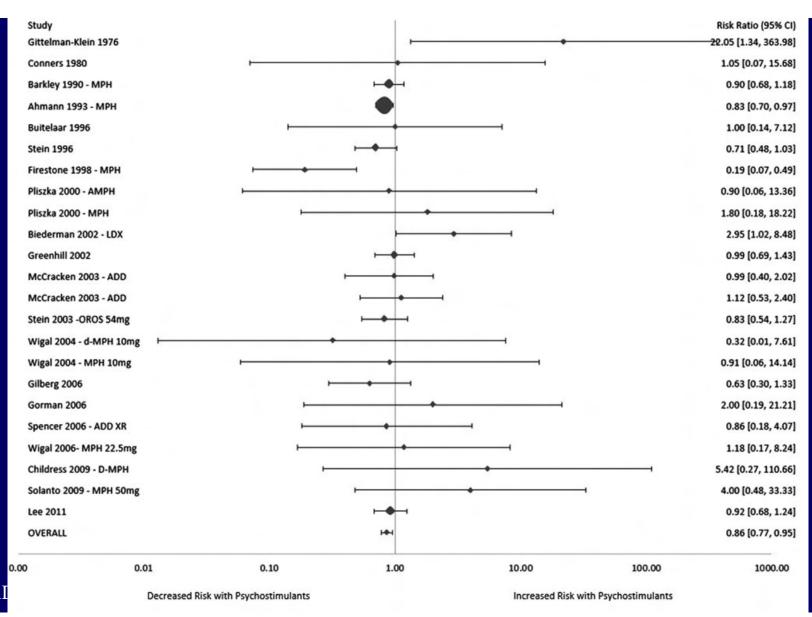
Same study also found moderate improvements in sustained attention (29 studies, 956 participants).

Methylphenidate Use & Intellectual Disability

(Sun et al. Sci Rep. 2019)

A meta-analysis reported moderate-to-strong improvements in ADHD symptoms with methylphenidate in ADHD patients with borderline intellectual functioning or intellectual disability (8 studies, <u>423 children</u>).

Graph in the next slide.


Study		Statisti	cs for eac	ch study		Hedges' g and 95% CI
	Hedges'	Lower	Upper	p-Value	Relative	
h, v√ s	g	limit	limit	,	weight	
Aman et al. (1993)	0.628	0.099	1.157	0.020	11.54	
Aman et al. (1997)	0.430	-0.076	0.935	0.096	12.03	
Hagerman et al. (1988)	0.344	-0.358	1.046	0.337	8.57	<u> </u>
Handen et al. (1990) low dose	1.330	0.471	2.190	0.002	6.60	<u> </u>
Handen et al. (1990) medium dose	1.960	1.009	2.911	0.000	5.71	
Handen et al. (1992) low dose	1.159	0.378	1.940	0.004	7.50	
Handen et al. (1992) medium dose	1.454	0.640	2.268	0.000	7.10	────────────────────────────────────
Handen et al. (1999) low dose	0.904	0.057	1.751	0.036	6.73	<u> </u>
Handen et al. (1999) medium dose	1.571	0.642	2.499	0.001	5.91	
Simonoff et al. (2013)	0.570	0.210	0.930	0.002	15.32	-
Varley et al. (1982) low dose	0.604	-0.256	1.464	0.168	6.59	
Varley et al. (1982) medium dose	0.836	-0.043	1.714	0.062	6.40	
Overall	0.878	0.612	1.143	0.000	100.00	
					-2. Be	00 -1.00 0.00 1.00 2.00 tter by placebo Better by methylphenidate

Psychostimulant Use & Risk of Anxiety

(Coughlin et al. J Child Adolesc Psychopharmacol. 2015)

A meta-analysis of 23 studies with over 2,900 children with ADHD reported that stimulant medications reduced anxiety by 14% relative to placebo (Coughlin et al., 2015).

Graph in the next slide.

Stimulants Use & Disruptive Behavior Disorders

(Pringsheim et al. Can J Psychiatry. 2015)

A meta-analysis of nine studies with over $\underline{1,300 \text{ participants}}$ found stimulants to be effective in reducing aggression, oppositional behavior, and conduct problems in youth with ADHD (with and without oppositional defiant disorder) and conduct disorder, as measured by teachers, and moderately effective as measured by parents.

Medication Effects on Real World Outcomes

Treatment with ADHD medications reduces:

Accidental injuries & Bone fractures Criminality

Motor vehicle crashes Depression

Traumatic brain injury Drug and alcohol abuse

Burn injuries Cigarette smoking

Emergency room admissions Educational underachievement

Suicide Teenage pregnancy

Premature death Sexually transmitted infections

ADHD Medications and Stigma

"My psychiatrist agreed that I had ADHD and gave me a trial of Ritalin and Strattera, but my mother was so against "giving her kid meth" and told me I embarrassed her by looking like a drug seeker"

Non-Medical Use of Prescribed Stimulants

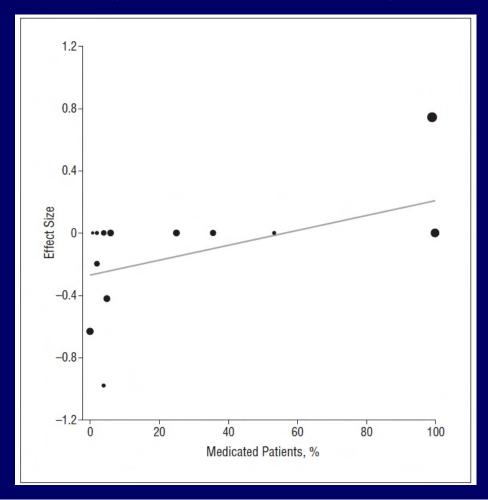
(Faraone et al. J Am Acad Child Adolesc Psychiatry. 2019)

- A systematic review of 109 studies concluded:
- Non-medical use (NMU) of prescribed stimulants is a significant public health problem especially in young adults.
- Oral NMU is associated with no, or minor, medical effects
- Adverse medical outcomes, including death, occur in some individuals, particularly when administered by non-oral routes.
- Academic and occupational performance enhancement were the most commonly cited motivations for non-medical use of stimulants.

"I talked to my psychiatrist, and he said there hasn't been much research done on how taking medication for life affects the brain. This is honestly my biggest barrier to taking medication."

ADHD Medications do not Cause Structural MRI Associations

(Hoogman et al. Am J Psychiatry. 2019)


Currently n	ot taking stim	ulants*	Stimulant use in patients with ADHD			
Cases (n=799)	Controls (n=1529)	Cohen's d (95% CI)	p value for diagnosis	Never stimulant use (n=82)	Ever stimulant use (n=637)	p value for positive vs negative for lifetime stimulant use
776	1484	-0·12 (-0·21 to -0·03)	0.0069	79	625	0.32
753	1474	-0·18 (-0·27 to -0·10)	>0.0001	80	590	0.41
777	1502	-0·10 (-0·19 to -0·01)	0.0248	80	627	0.15
757	1446	-0.08 (-0.17 to 0.003)	0.063	80	593	0.69
776	1484	0.01 (-0.07 to 0.10)	0.74	79	621	0.26
784	1508	-0·13 (-0·22 to -0·04)	0.0037	81	627	0.29
692	1253	-0.03 (0.04 to -0.12)	0.53	80	458	0.29
793	1512	-0.06 (0.04 to -0.16)	0.15	81	632	0.92
	Cases (n=799) 776 753 777 757 776 784 692	Cases (n=799) (n=1529) 776 1484 753 1474 777 1502 757 1446 776 1484 784 1508 692 1253	(n=799) (n=1529) 776 1484 -0·12 (-0·21 to -0·03) 753 1474 -0·18 (-0·27 to -0·10) 777 1502 -0·10 (-0·19 to -0·01) 757 1446 -0·08 (-0·17 to 0·003) 776 1484 0·01 (-0·07 to 0·10) 784 1508 -0·13 (-0·22 to -0·04) 692 1253 -0·03 (0·04 to -0·12)	Cases (n=799) (n=1529) Cohen's d (95% CI) p value for diagnosis (n=799) (n=1529) 0.0069 776 1484 -0.12 (-0.21 to -0.03) 0.0069 753 1474 -0.18 (-0.27 to -0.10) >0.0001 777 1502 -0.10 (-0.19 to -0.01) 0.0248 757 1446 -0.08 (-0.17 to 0.003) 0.063 776 1484 0.01 (-0.07 to 0.10) 0.74 784 1508 -0.13 (-0.22 to -0.04) 0.0037 692 1253 -0.03 (0.04 to -0.12) 0.53	Cases (n=799) Controls (n=1529) Cohen's d (95% CI) p value for diagnosis Never stimulant use (n=82) 776 1484 -0·12 (-0·21 to -0·03) 0·0069 79 753 1474 -0·18 (-0·27 to -0·10) >0·0001 80 777 1502 -0·10 (-0·19 to -0·01) 0·0248 80 757 1446 -0·08 (-0·17 to 0·003) 0·063 80 776 1484 0·01 (-0·07 to 0·10) 0·74 79 784 1508 -0·13 (-0·22 to -0·04) 0·0037 81 692 1253 -0·03 (0·04 to -0·12) 0·53 80	Cases (n=799) Controls (n=1529) Cohen's d (95% CI) p value for diagnosis Never stimulant use (n=637) 776 1484 -0·12 (-0·21 to -0·03) 0·0069 79 625 753 1474 -0·18 (-0·27 to -0·10) >0·0001 80 590 777 1502 -0·10 (-0·19 to -0·01) 0·0248 80 627 757 1446 -0·08 (-0·17 to 0·003) 0·063 80 593 776 1484 0·01 (-0·07 to 0·10) 0·74 79 621 784 1508 -0·13 (-0·22 to -0·04) 0·0037 81 627 692 1253 -0·03 (0·04 to -0·12) 0·53 80 458

^{*}Within this group, 152 patients were lifetime positive for the use of stimulant medication, 82 were lifetime negative; for 565 participants no lifetime information was available.

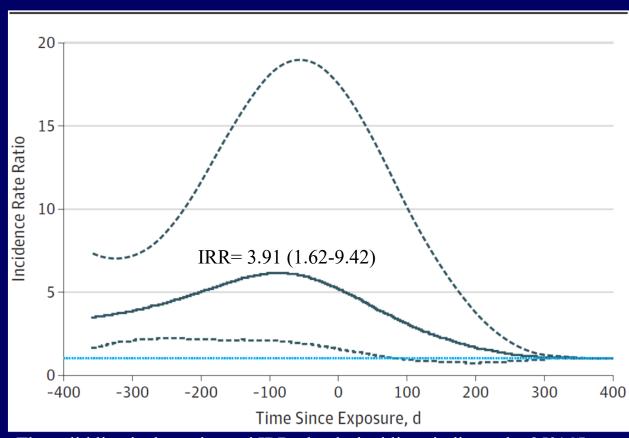
Table 4: Results of the exploration of the effect of medication on case-control differences

Stimulant Treatment is Associated with more Typical Activation

(Hart et al. JAMA Psychiatry. 2013)

ADHD Medication & Cardiovascular Events

(Liang et al. Int J Environ Res Public Health. 2018)


A meta-analysis of three studies with <u>775 adults</u> found no significant difference in adverse cardiac events between methylphenidate and placebo.

Study name		Statisti	ics for ea	ch study	9	Odds ratio	o and	d 95% C	<u>:I</u>	
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value					
Spencer et al.	1.471	0.308	7.032	0.484	0.629	1	1 -	-		- 1
Medori et al.	29.112	1.705	496.920	2.329	0.020			1-	-	■ →
Rosler et al.	1.536	0.724	3.258	1.117	0.264				-	
	2.325	0.684	7.910	1.351	0.177		1	1		
						0.01	0.1	1	10	100
						Fav	ours the placebo group	Favou	ars the methylphenid	ate group

Methylphenidate Use & Suicide Attempts

(Man et al. JAMA Psychiatry. 2017)

The Hong Kong Clinical Data Analysis & Reporting System, a population-based, electronic medical records database, was used to examine over <u>25,000 persons</u> receiving methylphenidate for ADHD. During the 90-day period prior to initiation of treatment, individuals with ADHD were greater than six times more likely to attempt suicide than after treatment. After ongoing treatment, the risk for attempted suicide was no longer elevated.

The solid line is the estimated IRR, the dashed lines indicate the 95%CI, and the blue dashed line indicates baseline.

Methylphenidate Use & Psychotic Episodes

(Man et al. Transl Psychiatry. 2016)

Using the same Hong Kong database, risk for psychosis did not differ between periods when patients were on and off methylphenidate treatment.

	IRR	95% CI	P-value
Incident psychotic episode (n = 103) Period with MPH treatment	0.98	0.52-1.86	0.95
Pre-risk period included 90 Days before first MPH treatment Period with MPH treatment		2.17-9.92 0.53-1.97	< 0.01 0.95

Methylphenidate Use & Psychotic Events

(Hollis et al. The Lancet Psychiatry. 2019)

A Swedish registry study of over 23,000 adolescents and young adults treated with methylphenidate for ADHD found no evidence of an increased risk of psychotic events due to methylphenidate treatment. A year after initiation of methylphenidate treatment, there was a 36% reduction in the incidence of psychotic events in those with a history of psychosis and an 18% reduction in incidence in those without a history of psychosis relative to the period immediately before initiation.

Which Non-Medication Treatments are Safe and Effective for ADHD

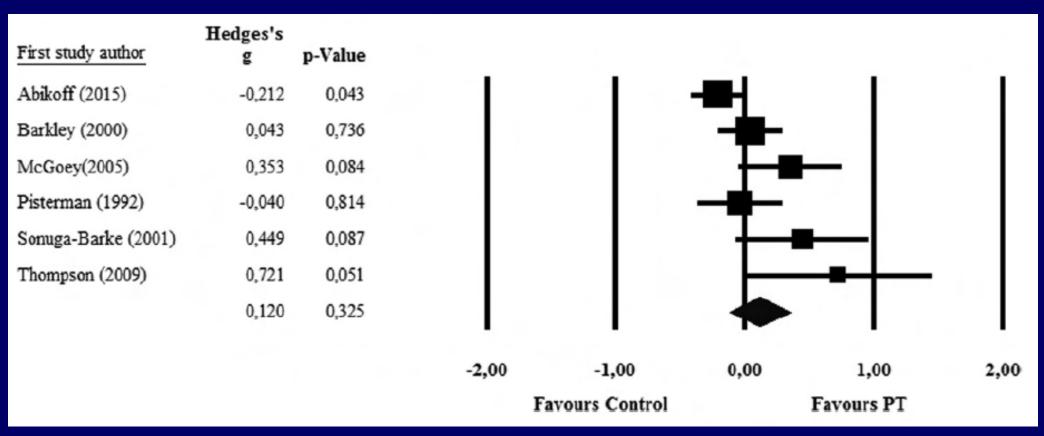
Which Non-Medication Treatments are Safe and Effective for ADHD

- Behavioral and Cognitive-Behavioral Therapies
- Computer-based Cognitive Training and Neurofeedback
- Supplements, Diet, and Exercise

ADHD & Parent Training: Assessment Methods

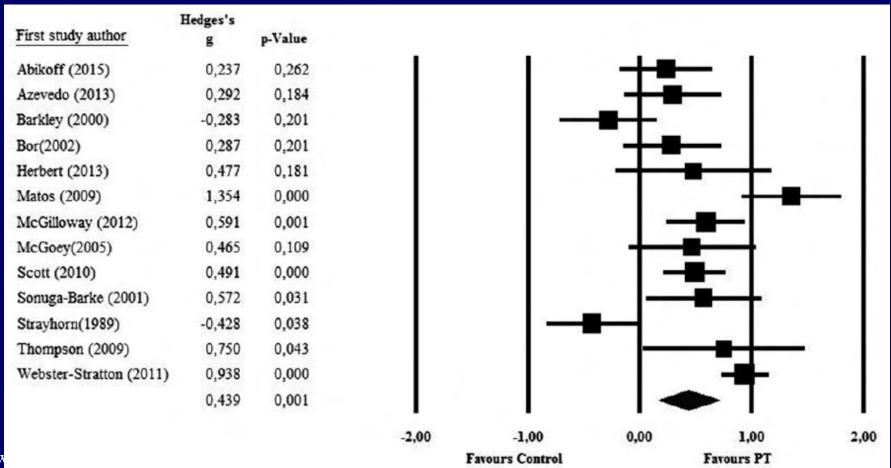
(Rimestad et al. J Atten Disord. 2019)

- Parents assess symptoms of ADHD
 - This is a flawed method because parents know which treatment their child is receiving
- An independent assessor blind to treatment group assesses symptoms of ADHD
 - This is the gold standard because assessments cannot be biased


Graphics in next six slides.

Parental Report of ADHD (Rimestad et al. *J Atten Disord*. 2019)

First study author	Hedges's	p-Value				J 1	
Abikoff (2015)	0,960	0,000	1	1	- 1	-	- 1
Azevedo (2013)	0,536	0,000		2	- 1 -	■-	- 1
Barkley (2000)	-0,096	0,662	- 1	- 1 -	━		- 1
Bor(2002)	0,334	0,293		. 1			
Herbert (2013)	0,426	0,094	- 1		-		- 1
Jones (2007)	0,470	0,023	- 1		_ —		
Matos (2009)	1,270	0,000	- 1				- 1
McGilloway (2012)	0,669	0,000			- 1 -	-=-	- 1
McGoey(2005)	0,177	0,538				- I	
Scott (2010)	0,441	0,025					- 1
Sonuga-Barke (2001)	0,560	0,034			 	━─┼	- 1
Sonuga-Barke (2004)	0,008	0,952	- 1		-	150	- 1
Strayhorn(1989)	0,467	0,024					
Thompson (2009)	1,377	0,000					—
Webster-Stratton (2011)	0,351	0,000	144		_ - 	-	- 1
	0,512	0,000	- 1		- ∢	◆	
			-2,00	-1,00	0,00	1,00	2,00
HDevidence org				Favours Control		Favours PT	


Independent Assessment of ADHD

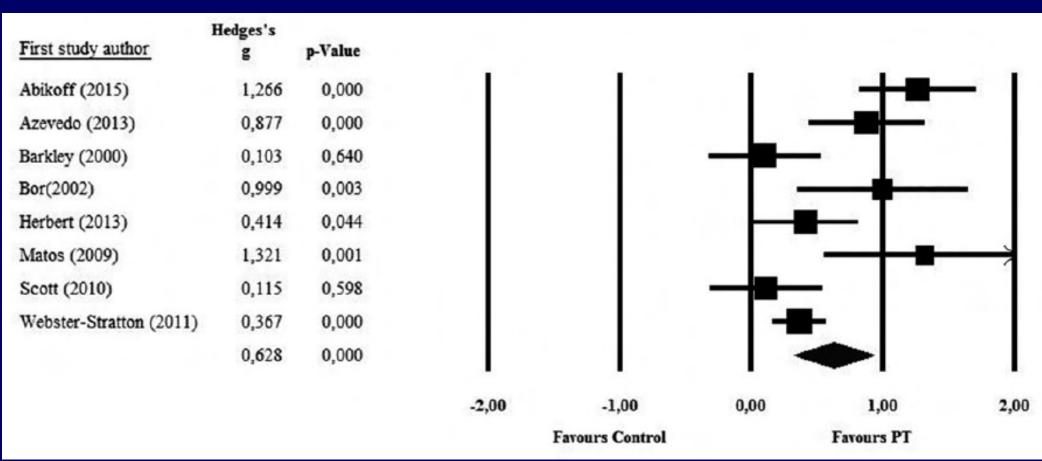
(Rimestad et al. J Atten Disord. 2019)

Parental Report of Conduct Problems

(Rimestad et al. J Atten Disord. 2019)

From ww

Independent Assessment of Conduct Problems


(Rimestad et al. J Atten Disord. 2019)

First study author	Hedges's	p-Value				
Abikoff (2015)	0,237	0,262	- 1	- 1	+=	- 1
Azevedo (2013)	0,292	0,184			+-	-
Barkley (2000)	-0,283	0,201		-		
Bor(2002)	0,287	0,201			-	
Herbert (2013)	0,477	0,181			_	━—
Matos (2009)	1,354	0,000		lu lu		+=
McGilloway (2012)	0,591	0,001		1	_	-
McGoey(2005)	0,465	0,109		1	-	-
Scott (2010)	0,491	0,000			- 1 -	-
Sonuga-Barke (2001)	0,572	0,031				-
Strayhorn(1989)	-0,428	0,038		-	\blacksquare	
Thompson (2009)	0,750	0,043			<u> </u>	—■—
Webster-Stratton (2011)	0,938	0,000				
	0,439	0,001		4	•	
			-2,00	-1,00 Favours Control	0,00	1,00 Favours PT

From ww

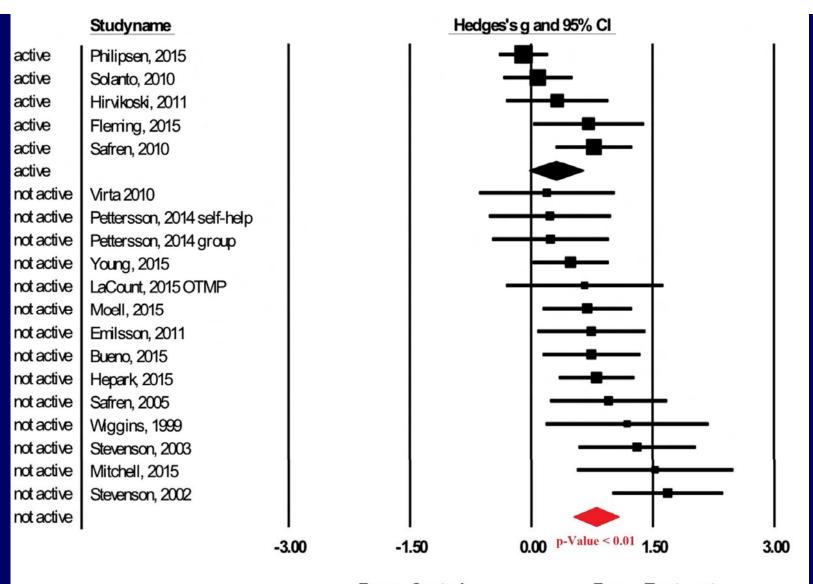
Parental Report of Negative Parenting

(Rimestad et al. J Atten Disord. 2019)

Independent Assessment of Negative Parenting

(Rimestad et al. J Atten Disord. 2019)

First study author	Hedges's	p-Value					
Cons de verillationers	g	151-164	7943	191			
Azevedo (2013)	0,274	0,269	- 1			_	
Bor(2002)	0,133	0,674		- 1 -		_	
Herbert (2013)	0,129	0,758		-	-	_	
McGilloway (2012)	0,010	0,953			-	b 2.0	
McGoey(2005)	0,630	0,032				-	
Pisterman (1992)	0,954	0,002			- 1 -	-+-	- 1
Scott (2010)	0,297	0,142			+=	- 1	
Thompson (2009)	0,736	0,005				-	\ I
Webster-Stratton (2011)	0,178	0,220			+=-		
	0,328	0,001		1	-	• 1	- 1
			-2,00	-1,00	0,00	1,00	2,00
				Favours Control		Favours PT	

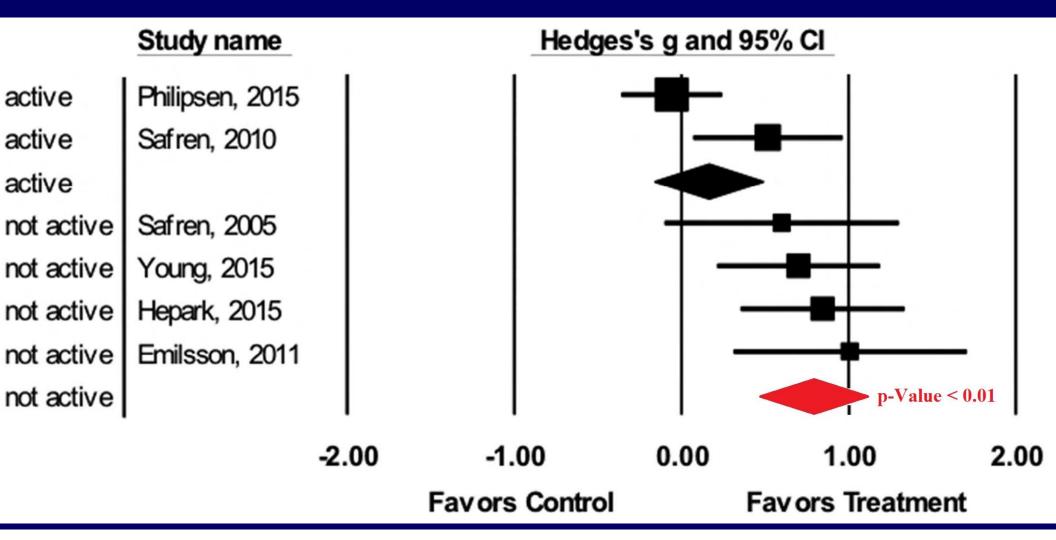

Cognitive-Behavioral Treatment for Adults with ADHD

(Knouse et al. J Consult Clin Psychol. 2017)

A meta-analysis of 19 studies of cognitive behavior therapy (CBT) for adults with ADHD included <u>896 participants</u>. It found associations with moderate improvements in self-reported ADHD symptoms and self-reported functioning. But when limited to the two studies with active controls and blind assessors (N = 244 participants), it found only small improvements.

Graphs in next two slides.

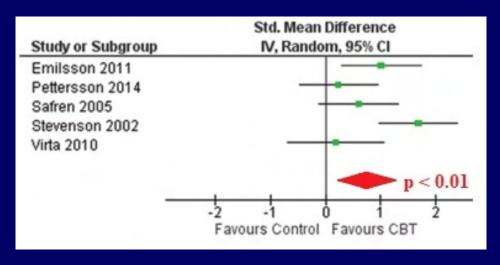
CBT: All Studies

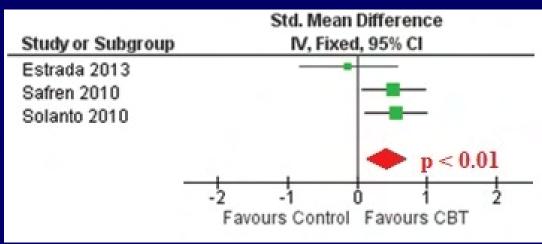


From www.ADHDevidence.or

Favors Control

Favors Treatment

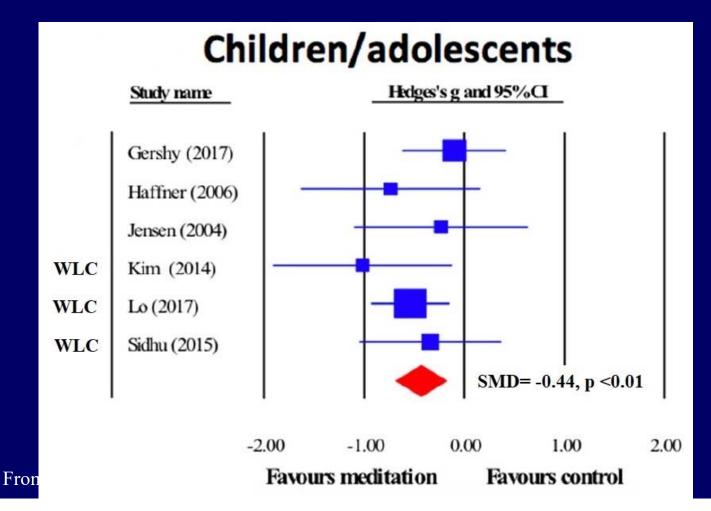

CBT: Blinded Assessors Only



Efficacy of CBT for Adults with ADHD

(Young et al. J Atten Disord. 2016)

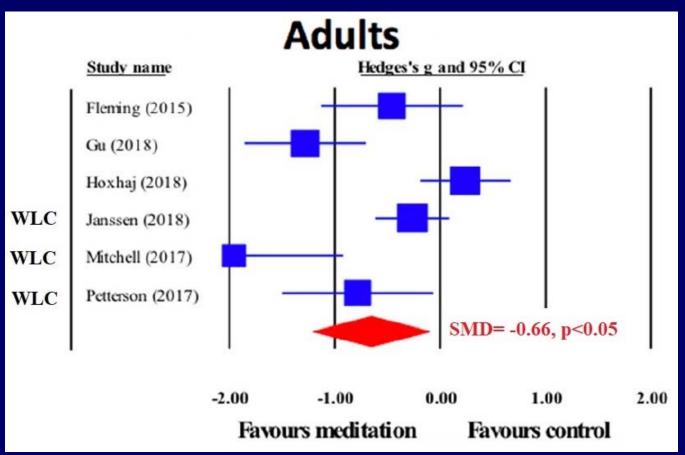
In another meta-analysis of <u>160 patients with adult ADHD</u>, CBT led to large to moderate improvements compared with waiting list controls. In three studies of 191 patients CBT led to small to moderate improvements compared to active controls.



CBT versus waitlist, outcome: ADHD symptoms From www.ADHDevidence.org

CBT versus active control, outcome: ADHD symptoms

ADHD & Meditation-based Therapy


(Zhang et al. Evid Based Ment Health. 2018)

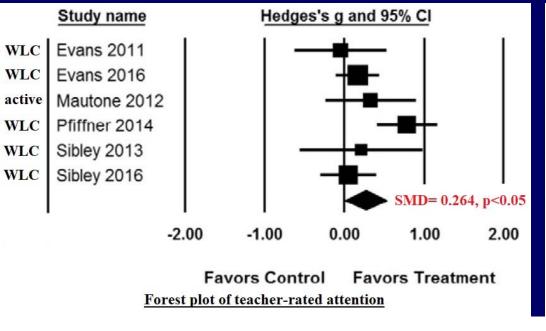
Not significant after removing waiting list controls

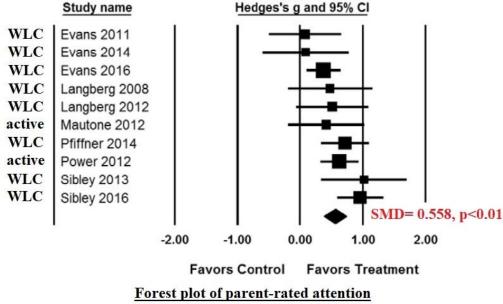
ADHD & Meditation-based Therapy

(Zhang et al. Evid Based Ment Health. 2018)

Not significant after removing waiting list controls

ADHD & Social Skills Training

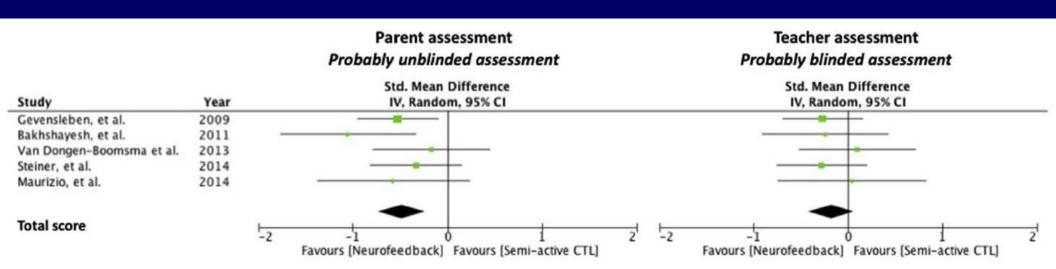

(Storebø et al. Cochrane Database Syst Rev. 2019)

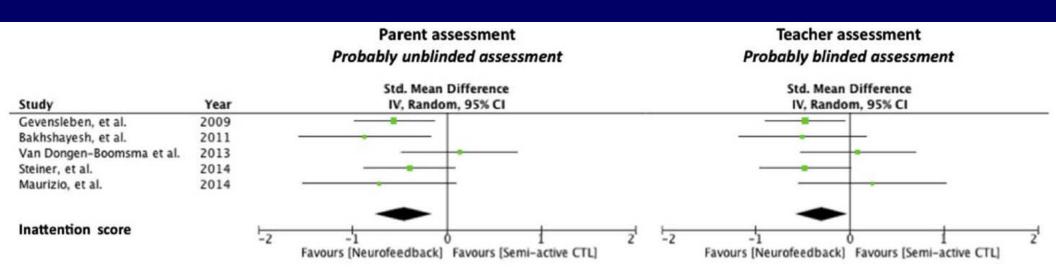

A meta-analysis found that social skills training for youth with ADHD did not improve teacher-assessed social skills (11 studies, over 1,200 youths), general behavior (8 studies, over 1,000 youths), or school performance and grades (5 studies, over 600 youths).

ADHD & Organizational Skills Interventions

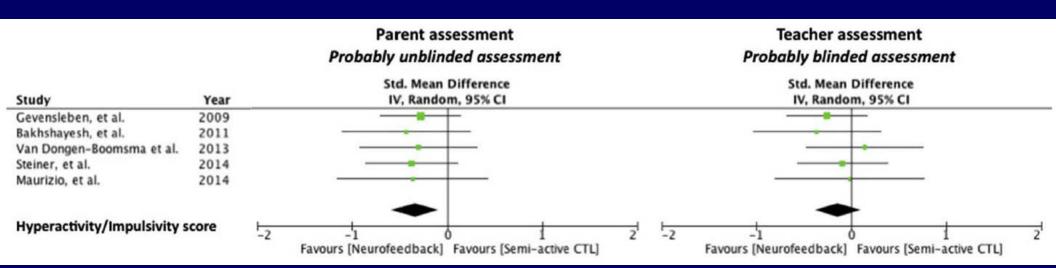
(Bikic et al. Clin Psychol Rev. 2017)

A meta-analysis of ten studies with <u>893 youths</u> reported that organizational skills interventions led to moderate reductions in parent-reported inattention symptoms.



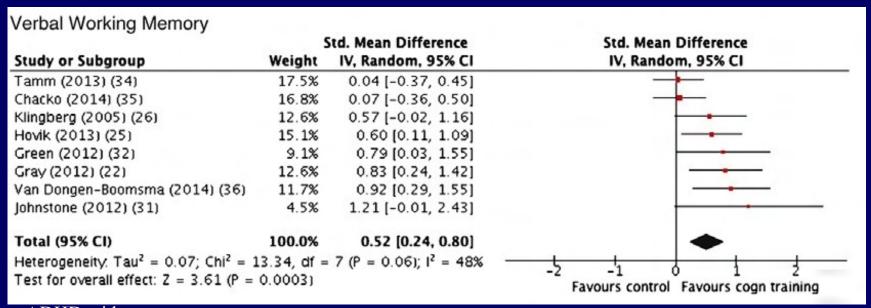

Which Non-Medication Treatments are Safe and Effective for ADHD

- Behavioral and Cognitive-Behavioral Therapies
- Computer-based Cognitive Training and Neurofeedback
- Supplements, Diet, and Exercise


(Micoulaud-Franchi et al. Front Hum Neurosci. 2014)

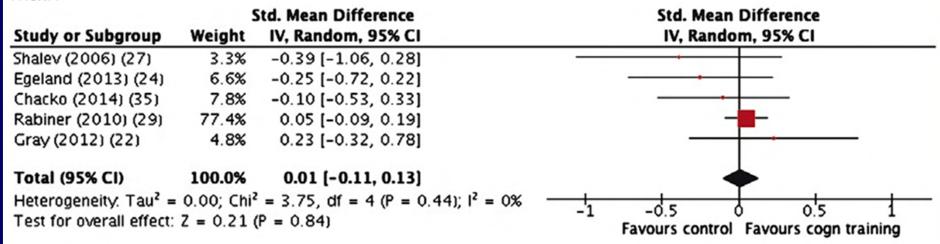
(Micoulaud-Franchi et al. Front Hum Neurosci. 2014)

(Micoulaud-Franchi et al. Front Hum Neurosci. 2014)

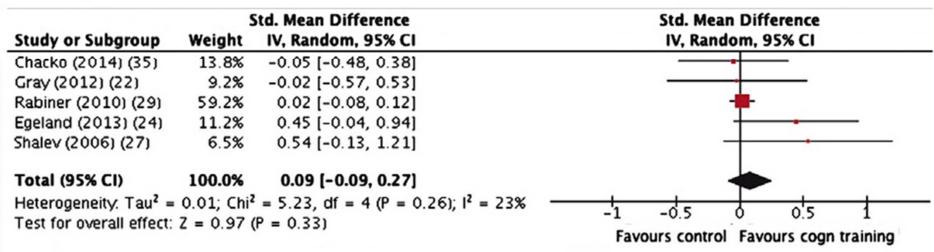

(Van et al. Eur Child Adolesc Psychiatry. 2019)

A more recent meta-analysis of ten RCTs with 256 participants found no effect on inattention symptoms, but a small-to-medium reduction in hyperactivity-impulsivity symptoms.

ADHD & Cognitive Training


(Cortese et al. J Am Acad Child Adolesc Psychiatry. 2015)

Probably blinded cognitive training studies with active controls reported no significant reduction in ADHD symptoms. But they did find moderate improvements in verbal working memory. There were no significant effects on math, reading, visual working memory, attention, and inhibition.



Academic outcomes

Math

Reading

From

Visual Working Memory

	9	td. Mean Difference	Std. Mean Difference	
Study or Subgroup	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Van Dongen-Boomsma (2014) (36)	15.9%	0.12 [-0.47, 0.71]		
Chacko (2014) (35)	29.5%	0.28 [-0.15, 0.71]		
Gray (2012) (22)	17.0%	0.58 [0.01, 1.15]		
Hovik (2013) (25)	22.8%	0.67 [0.18, 1.16]		
Klingberg (2005) (26)	14.9%	0.78 [0.17, 1.39]		
Total (95% CI)	100.0%	0.47 [0.23, 0.70]	•	
Heterogeneity: Tau2 = 0.00; Chi2 = 3	8.89, df =	4 (P = 0.42); I ² = 0% -	<u> </u>	
Test for overall effect: Z = 3.92 (P <	() () [[[] [] [] [] [] [] [] [] [ON A PURPLEMENT STATE HOLD VALUE OF	Favours control Favours cogn training	

Attention

	Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Van Dongen-Boomsma (2014) (36)	14.4%	-0.29 [-0.90, 0.32]		
Tamm (2013) (34)	19.3%	-0.23 [-0.64, 0.18]		
Chacko (2014) (35)	18.8%	0.07 [-0.36, 0.50]	_	
Gray (2012) (22)	15.8%	0.10 [-0.45, 0.65]		
Egeland (2013) (24)	17.2%	0.20 [-0.29, 0.69]		
Johnstone (2012) (31)	13.6%	1.08 [0.43, 1.73]		
Tucha (2011) (30)	1.0%	1.98 [-1.41, 5.37]		
Total (95% CI)	100.0%	0.14 [-0.19, 0.48]	•	
Heterogeneity: Tau2 = 0.11; Chi2 = 1	14.22, df =	6 (P = 0.03); I ² = 58%		
Test for overall effect: Z = 0.83 (P =			Favours control Favours cogn training	

Inhibition

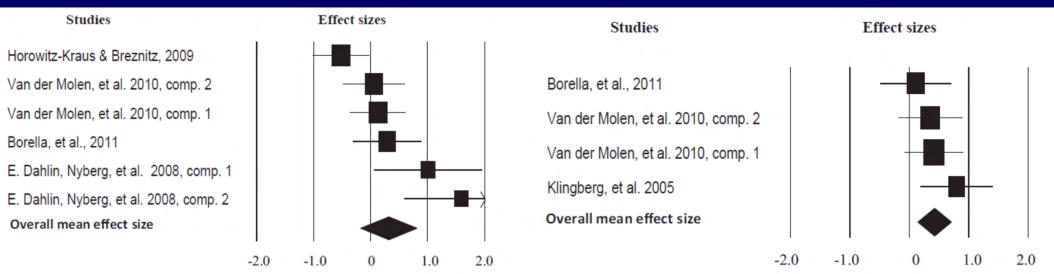
	Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Van Dongen-Boomsma (2014) (36)	8.8%	-0.61 [-1.34, 0.12]		
Johnstone (2012) (31)	12.4%	-0.04 [-0.65, 0.57]		
Chacko (2014) (35)	24.4%	-0.02 [-0.45, 0.41]		
Johnstone (2010) (28)	8.8%	0.21 [-0.52, 0.94]		
Tamm (2013) (34)	26.7%	0.22 [-0.19, 0.63]		
Egeland (2013) (24)	19.0%	0.29 [-0.20, 0.78]	+-	
Total (95% CI)	100.0%	0.07 [-0.15, 0.28]	•	
Heterogeneity: Tau2 = 0.00; Chi2 = 5	5.10, df =	5 (P = 0.40); I ² = 2% —	_ 	
Test for overall effect: Z = 0.62 (P =	A CONTRACTOR OF THE PROPERTY O	The Control of the Co	Favours control Favours cogn training	

From www.ADHDeviden

Cognitive Training for Treating ADHD preschoolers

(Pauli-Pott et al. Eur Child Adolesc Psychiatry. 2020)

- A meta-analysis of randomized controlled trials (RCTs) with preschoolers found:
 - -Significant improvements in working memory (0.46) and inhibitory control (0.30)
 - -No significant improvements in flexibility, reward dysregulation, or symptoms of ADHD and oppositional defiant disorder.


ADHD & Effectiveness of Memory Training

(Melby-Lervag & Hulme. Dev Psychol. 2013)

A meta-analysis found that working memory training led to short-term improvements in both verbal working memory (21 studies, over 1,300 participants) and visuospatial working memory (18 studies, over 1,000 participants), with "no convincing evidence that even such near-transfer effects are durable." Most studies lacked active controls.

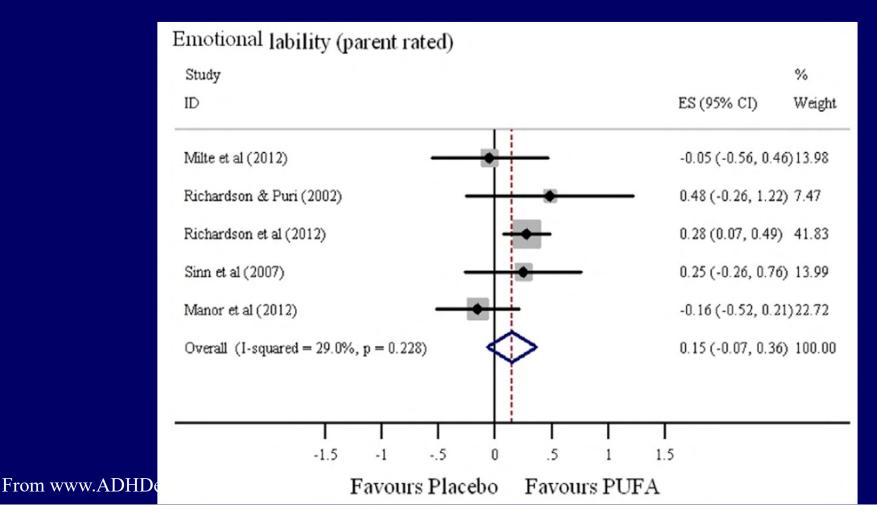
Verbal Working Memory

Visuospatial Working Memory

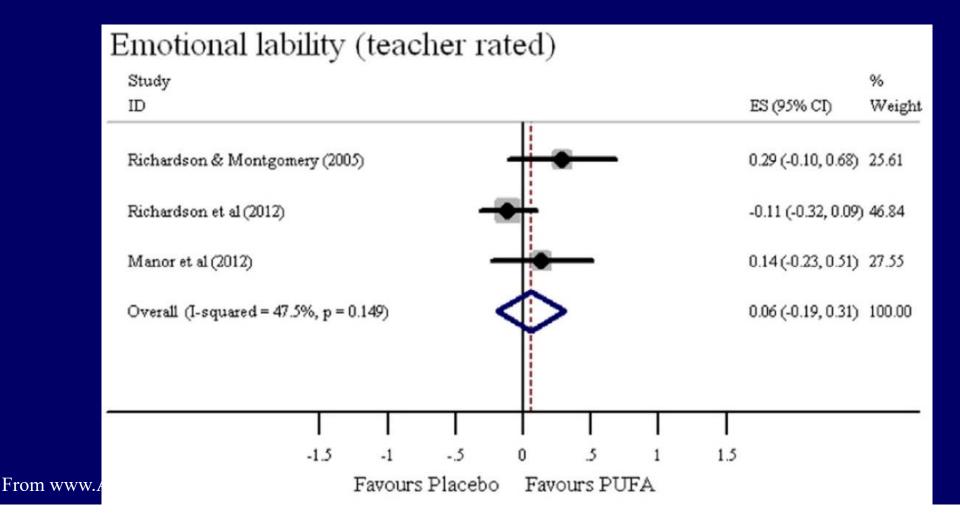
Which Non-Medication Treatments are Safe and Effective for ADHD

- Behavioral and Cognitive-Behavioral Therapies
- Computer-based Cognitive Training and Neurofeedback
- Supplements, Diet, and Exercise

(Bloch & Qawasmi. J Am Acad Child Adolesc Psychiatry. 2011 & 3 more sources)

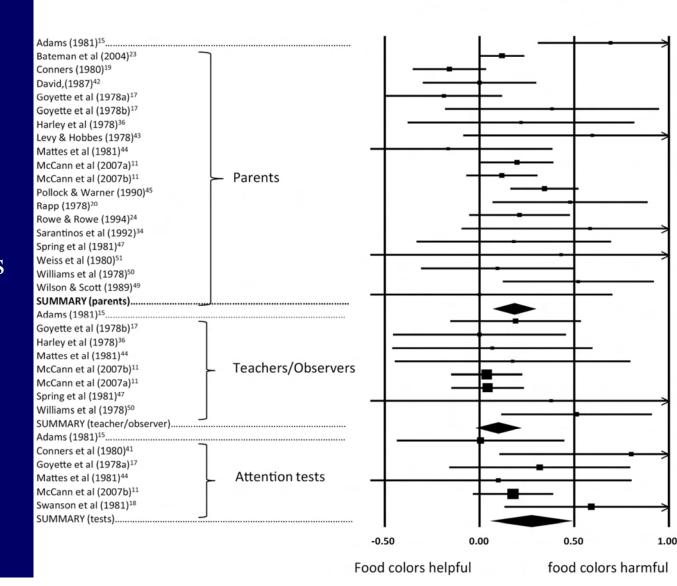

Omega-3 fatty acid supplementation was associated with small-to-medium improvements in ADHD symptoms in three meta-analyses (ten studies with 699 participants, 16 studies with 1,408 participants, 7 studies with 534 participants). Another meta-analysis, with 18 studies and 1,640 participants, found tiny improvements.

Study or Subgroup	Sto Weight	I. Mean Difference IV, Fixed, 95%CI	Year	Std. Mean Difference IV, Fixed, 95% CI
Voigt 200144	8.0%	0.04 [-0.49, 0.58]	2001	
Richardson 200242	4.1%	0.38 [-0.37, 1.13]	2002	
Stevens 2003 ²⁵	4.8%	0.40 [-0.29, 1.09]	2003	
Richardson 200541	17.3%	0.36 [-0.00, 0.73]	2005	
Sinn 2007 ⁴⁵	11.6%	0.58 [0.13, 1.02]	2007	
Vaisman 200843 fishoil	6.3%	0.17 [-0.44, 0.77]	2008	
Johnson 2008 ³⁹	11.1%	0.35 [-0.11, 0.81]	2008	+
Vaisman 200843 omega-3	5.7%	0.41 [-0.22, 1.05]	2008	
Raz 2009 ⁴⁰	9.6%	0.13 [-0.36, 0.62]	2009	
Gustafsson 200946	13.8%	0.22 [-0.19, 0.62]	2009	
Belanger 2010 ⁴⁷	7.7%	0.40 [-0.15, 0.95]	2010	+
Total (95% CI)	100.0%	0.31 [0.16, 0.47]		•
Heterogeneity: Chi ² = 3.68				
Test for overall effect: Z =	4.04 (P < 0.000	11)		-1 -0.5 0 0.5 1
				Favors Placebo Favors Omega-3


(Cooper et al. J Affect Disord. 2016)

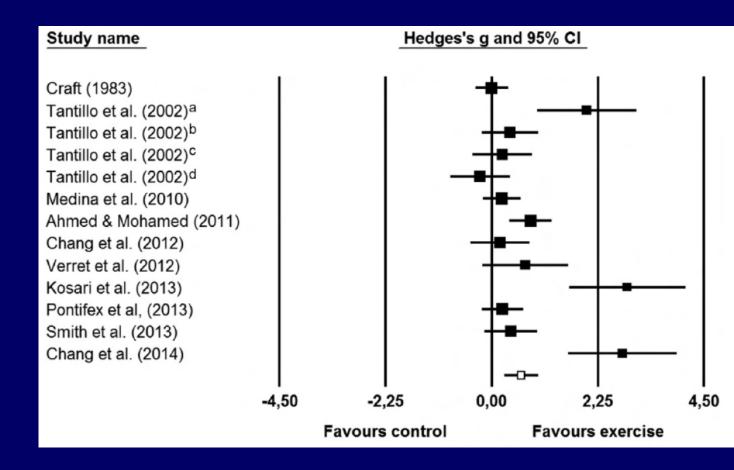
A meta-analysis found no evidence of any effect of omega-3 fatty acid supplements on parent-rated (5 studies, 650 children) or teacher-rated (3 studies, 598 children) emotional lability symptoms, or parent-rated (8 studies, 875 children) or teacher-rated (6 studies, 805 children) oppositional symptoms in children with ADHD.

(Cooper et al. J Affect Disord. 2016)


(Cooper et al. J Affect Disord. 2016)

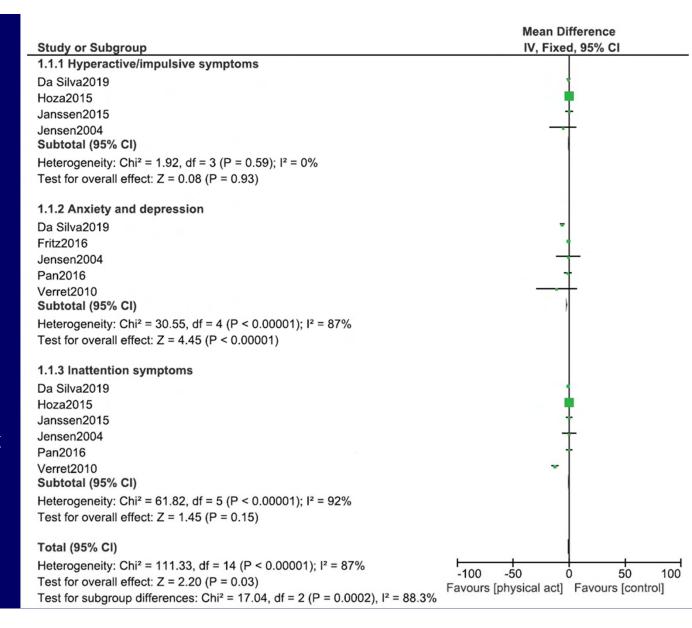
ADHD & Synthetic Food Colors

(Nigg et al. J Am Acad Child Adolesc Psychiatry. 2012)


A meta-analysis of five double-blind crossover studies with 164 participants found that restricting synthetic food colors from children's diets was associated with a small reduction in ADHD symptoms.

ADHD & Physical Exercise

(Vysniauske et al. J Atten Disord. 2016)


A meta-analysis of ten studies (300 children) found exercise was associated with a moderate reduction in ADHD symptoms but had no significant effect after adjusting for publication bias.

Impact of Physical Exercise on Children with ADHD

(Zang, Y. Medicine. 2019)

Another meta-analysis found no significant effect of exercise on either hyperactivity/impulsivity (4 studies, 227 participants) or inattention symptoms (6 studies, 277 participants), but significant reductions in anxiety and depression (5 studies, 164 participants).

ADHD & Dietary Habits in Adulthood

(Li et al. Am J Med Genet B Neuropsychiatr Genet. 2020)

A nationwide population study using the Swedish Twin Register identified almost 18,000 twins who completed a web-based examining the relationship between inattention and hyperactivity/impulsivity subtypes and dietary habits. ADHD was associated with unhealthy diets high in added sugar, meat and fats and low in fruits and vegatables.

Modifiable Risk Factors for ADHD

- EXPOSURES TO CHILDREN
- Lead exposure
- Artificial food colorants
- Poverty
- Organophosphate pesticide exposure
- Family adversity Low cohesion
- Extreme deprivation
- NUTRIENT DEFICIENCIES
- Iron deficiency
- Omega-3 polyunsaturated Fatty Acid Deficiency
- Vitamin D deficiency

• EXPOSURES TO THE FETUS

- acetaminophen
- Valproate
- Phthalate
- Maternal pre-eclampsia & hypertension
- Maternal stress
- Preterm birth


Plans for Disseminating the ICS ADHD

To maximize the impact of the ICS ADHD it needs to be disseminated to patients, families, ADHD advocates, clinicians, policymakers and any other stakeholder groups. You can help by using social media to spread the word

Current Translations of the ICS ADHD

Experts of the WF ADHD have written an International Consensus Statement, that is now available in Arabic, Catalan, Chinese, English, French, German, Italian, Russian, Spanish and Turkish language.

If, after reading the International Consensus Statement, you approve its contents, please join as a signatory by emailing Prof. Faraone: svfaraone@upstate.edu

Stephen V. Faraone, PhD President, World Federation of ADHD Board Member, American Professional Society of ADHD and Related Disorders	Mark A. Bellgrove, PhD President, Australian ADHD Professionals Association
Jeffrey H. Newcorn, MD President, American Professional Society of ADHD and Related Disorder	Yi Zheng MD President, Asian Federation of ADHD. President, Chinese Society of Child and Adolescent Psychiatry.
Zuleika Morillo de Nieto, MD President, Latin American Federation and Association of Child & Adolescent Psychiatrists and related professions President, Latin American League for the study of ADHD.	Tobias Banaschewski, MD, PhD Chair, European Network for Hyperkinetic Disorders Member, European ADHD Guidelines Group Coordinator, ADHD Guidelines Group of the Association of Medical Scientific Societies in Germany
Dr Martin Gignac, MDCM, FRCPC Chair, Canadian ADHD Resource Alliance	Nouf M. Alsaud Chair, Saudi ADHD Society
Iris Manor, MD Chair of the Israeli Society of ADHD Chair, ADHD section, World Psychiatric Association Chair, Israeli Society of ADHD	Luis Augusto Rohde, MD, PhD Past-President, World Federation of ADHD
Li Yang Board Member, World Federation of ADHD	Samuele Cortese, M.D., Ph.D. Member of the European ADHD Guidelines Group
Joseph Biederman, MD Past President, American Professional Society of ADHD and Related Disorders	Doron Almagor, MD, FRCPC Former Chair, The Canadian ADHD Resource Alliance
Mark Stein Past President, American Professional Society of ADHD and Related Disorders	David Coghill MB ChB MD FRCPsych FRANZCP Vice President Australian ADHD Professionals Association

You Can Help

- Translate the ICS ADHD into another language
- Promote the ICS ADHD on your social media accounts
- Cite the ICS ADHD in your publications
- Give presentations using slides from the ICS ADHD
 - -Will be freely available at www.ADHDevidence.org.

9th World Congress on ADHD

18 - 21 May 2023 | Amsterdam

