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 Abstract 

An overview of the state-of-the-art on biomedical data for artificial intelligence 
is provided via a co-created opinion statement on trends, challenges, and 
opportunities. The main focus is on biomedical research but the perspectives are 
multidisciplinary, with a special eye on how to best manage biomedical data so 
that it can be used for data-driven reasoning. The clinically actionable insights 
that could be provided by such pipelines are critically reviewed, with ethical 
aspects highlighted. The take home message is that while reference datasets are 
a potentially powerful means to new findings also of clinical relevance, the 
requirement specification for how to build and maintain a dataset infrastructure 
is difficult to perfect and requires a dedicated and goal-oriented effort from 
participating organisations. 

  
 
  



1 Introduction 
Almost 100 experts on biomedicine or artificial intelligence gathered at the RIKEN Center for 
Integrative Medical Sciences in Yokohama for two days in November of 2019. The occasion 
was the 6th RIKEN-KI-SciLifeLab Symposium: Biomedical Data for Artificial Intelligence 
(Figure 1). As organisers, we sought to produce a tangible outcome in the form of a useful class 
of reference datasets from various strategic areas, including genetics/genomics, 
transcriptomics, epigenomics, proteomics, metabolomics, immunology, phenotyping, 
epidemiology, microbiome, and behaviour analysis. The main purpose of this effort was to 
attract AI researchers to problems in the life sciences, by giving them access to structured data. 
Candidate datasets were to meet criteria of: 

● already being published, in order to prevent a long waiting time before they could be 
coordinated for use by the participating Data Centres, 

● a large enough size, measured e.g. by number of samples or dimensions, in order to be 
suitable for data-driven processing for AI method application, 

● having a well described biological background, 
● coming with background knowledge of the underlying biological processes, so that 

test results can be evaluated and validated. 
 
 

 

Figure 1: Most of the participants and all of the organisers, captured outside the lecture hall at 
IMS RIKEN, Yokohama. 

 
 
At the symposium, all speakers were asked in advance to comment on some questions prepared 
by the arrangers of the symposium. The AI-oriented speakers were asked to prepare a ten-
minute presentation of a successful application of AI or machine learning to a biomedical 
problem that included: 
 



 

Figure 2: Participants in pensive mode for the individual idea and concept generation phase 
of the speedwriting workshop. 

 
 

A1. Brief introduction of the biomedical problem 
A2. Description of the available data, highlighting particular challenges 
A3. Choice of method and why 
A4. Result and wider implications  
 

Similarly, the biomedical researchers were asked to include: 
B1. Brief introduction of their research field 
B2. Central question or problem that may be addressable by AI methods 
B3. Any wish or expectation for what an AI approach may be able to do, potential in 
terms of resources saved, improvement in public health, etc. 
B4. Description of the data that is typically generated or worked with that may be a 
candidate for a reference data set 

 
To AI researchers and practitioners, the complicated relationships and background to data-
driven investigations into biology often prove challenging. There is usually no lack of variables 
to measure, but complete and pre-processed datasets are hard to come by. There is also a talent 
problem: many labs seek to appoint lab members with backgrounds in both the medical 
sciences and in computational science or math. The multimodal nature of data, like when 
combining modalities (e.g. image-to-gene expression) can sometimes provide a shortcut to 
semantics (Webb, 2018). Generative models can help create pseudo-populations and synthetic 
data, which can in turn be refined by adversarial methods. Companies with access to large data 
can make incremental improvements and also occasionally provide disruptive leaps. Some of 
the suggestions made of AI-supported investigations were: 

○ Single cell networks from images 
○ Mechanisms behind cell heterogeneity 
○ Epigenetic marks as prognostic markers 
○ Screening for therapeutic approach and integrate host-microbiome co-metabolism 
○ Bridges between structured and unstructured data in biomedical domains 
○ Finding viral genome integration sites  



Skeleton proposals for 13 different datasets were discussed, providing an excellent basis for 
bootstrapping future joint work. The process of grounding a roadmap towards a requirements 
specification was hence successful, but for the reference datasets to be put into the hands of 
data scientists and AI experts, ownership of the future process must be assumed by individuals, 
as appointed within the organisations involved. We would argue that this problem is generic, 
and not resulting from any structure particular to the three organisations at hand. 
Representatives with experience and responsibility for infrastructure and maintenance of data 
were present, keeping the proposals within practically feasible limits.  
 

2 Materials and Methods 
The discussion on the future of AI, data science, and data-driven methods for biomedical data 
opened with brainstorming, in which individually generated ideas were collected in the form 
of notes on trends, opportunities, and challenges (Figure 2). These notes were clustered into 
six groups: 

● Gaps 
● Mechanisms 
● Ideals and Risks 
● Transparency 
● Augmentation 
● Openness 

 
The notes were distributed to the respective groups to support their discussions. This helped to 
quickly establish a focus and discussions were intense. With one person named as the writer, 
groups produced almost a full page each of text in only 13 minutes, using the speedwriting 
methodology (Boman 2014). The outcome was later refined in a continued co-creation process 
via a shared digital document. 
 

3 Results 
The following six subsections contain material co-created in the speedwriting groups. The 
actual notes that were produced in a first step of silent private contemplation and note writing 
are available as high resolution images in the supplementary material to this essay (repo: 
http://tiny.cc/RIKEN-KI-SciLifeLab).  

3.1 Gaps 
AI was first presented to the medical community as second opinion, an expert system that can 
these days be consulted via a subscription/consultation model. Typically, the predictions 
generated by machine learning are not contributing to causal explanations and the integration 
into regular care has been very slow, with AI today often being considered as first opinion 
instead. In application areas like digital pathology, for instance, the machine may start and 
human experts follow. For triaging, we may imagine walking into a hospital, and a computer 
decides which tests to run. On the care provider side, there is also the concept of augmented 
human, in which a doctor is endowed with even more expertise, thanks to informed decision 
support from an AI system.  



A gap that may in such situations occur is the trust gap: Is AI curation as reliable as manual 
curation? Can an AI system choose which samples need human expert curators? A related gap 
is the control gap: How do humans stay in control of ethics, making sure that human interests 
are always served by AI systems? Old mechanisms like ethical permits do not suffice here. A 
data gap makes pre-processing necessary before AI systems can give any advice whatsoever, 
for example via the train-test-validation loop often adapted in machine learning. Data 
integration from different medical-related modalities is often necessary, like looking at genetic 
data and EHRs simultaneously for a patient, and combining the result in an intelligent way.  
A creative gap points to the tendency for AI systems to do ‘more of the same.’ That is, instead 
of innovating, they play it safe by assuming that the immediate future will resemble, or even 
be identical, to the past. A method gap lies between statistical learning theory, fairly well-
known to humans, and modern machine learning algorithms and methods. While the former 
can be quite technical and difficult to grasp, the latter can be completely opaque. A trend in AI 
in recent years is to abstain from optimal solutions to keep transparency and intelligibility as 
system properties. More pragmatic aspects of this gap is related to fixing a level of accuracy 
and reliability before moving an AI model into the clinic. This is related to the explanation 
gap: if an AI system helps humans in recognising patterns of a size and complexity beyond the 
ability of humans, how can we understand how the hidden pattern was found, and what its 
significance is?  
The granularity gap lies between what we can see and what we need for successful care. 
Healthcare data is noisy. How much data is enough to really understand health, through the 
noise? It seems neither genome nor transcriptome is enough, do we need to know what is 
happening in each cell, or in each human? Finally, the regulation gap: synthetic data sets help 
us understand what our methods actually can tell us. What are the risks associated with having 
obscure computer resources in obscure places that generate fake data to confuse humans and 
confuse other AI systems, as in adversarial method development? Data terrorism and pollution 
of public datasets seem to have created a need to police, monitor, and regulate data, but how? 

3.2 Mechanisms 
There are at least five families of questions pertaining to mechanisms: 

• Interpretability of AI-models 
• Biological mechanisms that are of interest to identify and act upon 
• Classical statistical learning vs machine learning 
• Automation 
• Scalability 

  
A naive first step in interdisciplinary collaboration can be to make as much data as possible 
available to data scientists. Scalability and generalisability remain hurdles for bringing research 
into the clinic. We need to be extremely aware of bias, or adapt to a necessary evil. Machine 
learning models are notoriously hard to interpret. Furthermore, there are adversarial attacks, 1-
pixel attacks, and even attacks on software intended to explicate AI results (Slack, 2018). Do 
we need a traditional statistical model that can be tested in a hypothesis-driven framework in 
order to say things about mechanisms, or can we be data-driven? Should machine learning 
solely be used to automate manual labour? What are the economic and social processes that 
affect scalable development of AI? The problem of bringing together biological and 
epidemiological causation is hard and we must note the difference between identifying causal 



chains and manipulating causes. Both functional biology and epidemiology is about 
explanations and reliability and trust in models is necessary to move on to useful predictions. 

3.3 Ideals and risks 
What does a perfect future hold, in which biology and AI are fully integrated into regular 
care? And what are the associated risks? Two bullet lists concisely provide perspectives. 
 
IDEALS 

● Diagnosis and treatments will be personalised and made more effective with AI. 
Personal monitoring of health indicators generates data that may be used to prevent 
disease before it emerges, and targets are open systems, meaning new data can change 
the prediction target at any time as information is refined. 

● Humans get an extended lifespan, long healthy aging.  
● Less medication, and better targeted. Not everything needs to be treated with medicine, 

and learning AI methods figure comorbidities out, design smart pills, and address any 
required lifestyle changes. Prevention of disease, via targeted smart therapies. 

● Computer-aided diagnosis is implemented everywhere it is useful. 
● Health-motivated environment monitoring of the patient ecosystem and everything that 

surrounds an individual, in societal as well as natural habitat. 
● Data available for all kinds of health purposes, including ‘blue sky research’. 

 
RISKS 

● Ageing populations and overpopulation leading to further diminished resources. 
● Privacy risks with large health databases and monitoring. 
● Low accuracy levels in AI predictions. 
● Loss of jobs. 
● Inequality risks related to AI system accessibility being unfair. 
● Reliable data lacking for life science research. 
● Increased monitoring and data collection to evaluate our state of health yields new risks 

for attacks, as such information is valuable. 
● Health insurance access inequalities. 
● Increased state surveillance of individuals. 

3.4 Transparency 
Through philosophical analyses of responsibility and ethics of autonomous robots, as well as 
the policy processes that drive their development, a wide debate involving priests, physicists, 
astronomers, politicians, and many more professions has now been going on for at least three 
decades (DeLanda 1991). For medical decisions, clinical guidelines and inspecting bodies are 
operating in our hospitals, so that whenever human expertise is questioned, there is some 
process to fall back on. For a new kind of decision maker, a first opinion AI system suggesting 
clinical action, existing guidelines and protocols can not simply be copy-pasted in. People 
perceive advice from a machine differently from that of a human doctor, and what if it is a 
panel of machines deciding? In most cases, there is not one correct diagnosis. This complicates 
validation of machine advice, just as human advice has changed over the last 125 years or so 
of modern medicine. Research turns human biology into a moving target, which will affect 
learning machines too.  
Hybrid systems consisting of AI and humans working together to solve problems are 
sometimes appropriate, such as when an expert system is devised for clinical problems. Then 



human experience can to some extent be coded into actionable insight, and heuristics can be 
passed on from human to machine, explicitly or implicitly. But not all efforts for human care 
are evidence-based and fit to put in a database. The systemic and holistic lessons learned for 
how to interpret evidence and provide humans with advice must be taken into account. 
Machines operating on quantitative evidence and providing advice based on that foundation 
are fundamentally and technologically distinct from machines operating on qualitative 
evidence and in an environment partly dictated by judicial aspects and norms. 
For advice to be clear, the entity providing it should be transparent. In recent years, some 
machine learning algorithms have abstained from optimality in favour of intelligibility and 
transparency. Could a machine learning system even train to become more intelligible? 
Interpretation of computer output has traditionally been a human task, but could the two meet 
half-way?  
The hardest problems, usually involving causal explanations and reasoning under harsh time 
constraints require human cooperation. AI systems have been called in to help many times over 
the last 20 years with various tasks related to extreme events and health-related puzzles. How 
to sustain collaborations between humans and machines in large, perhaps global, networks is 
very different from creating ad hoc collaborations for short-term solutions. Could machines 
benefit from repositories and reference data sets? What is the role of human trust and 
cooperation in striking up long-term collaboration for the hardest problems, with AI systems 
in there for decision support? 

3.5 Augmentation 
Even if historians often say that there is nothing particularly revolutionizing about the times 
we live in, healthcare seems to be in transition. Predict for good health, old age, the importance 
of mutations; the list is long. With more data, faster methods to analyse the data, personalised 
results, and reliable and fast conclusions, it is hard not to think of such progress as coming up 
with solutions at a much faster pace that before. This is leveraged by a model zoo, searchable 
model repositories, and commercially driven by companies that would love to monitor your 
regular health check-ups. It all leads to one future: the augmented human. 
For augmentation, machines have to access profiles from individuals. How does one collect 
such data without compromising personal integrity? Federated systems for machine learning 
use distributed learning principles that can operate without having a centralised data store. 
Automated processing and analysis of health records is done in many countries today, while in 
other countries data seems to be lost for research purposes if it ends up in a health record. 
Biochemical profiles from our blood, monitoring of circulating tumor cells, supporting the 
understanding of incidence and recurrence of cancer: if we do not allow for monitoring because 
it may disrupt and interfere with people’s lives, we may allow devices to be monitoring us 
ubiquitously and transparently. What transparency means rapidly becomes more opaque with 
the advent of qubits and quantum interference devices, and in nanotechnology, partly due to 
the different notions of ‘observation’ in these different realms.  
Since the augmented human may suffer from information overload, communication with the 
AI part needs to be smart, especially since we are dealing with life course data. With time, logs 
will be long, and non-anonymous data will leak. How can such data be found and deleted, as 
necessary? Any massive data project requires technological security measures and here we are 
considering one project per individual on the planet. 
 



3.6 Openness 
In practice, the accuracy of real world data depends on the data itself. Missing values, typos, 
artifacts, erroneously imputed data points are all on the list of issues. If too much streamlining 
of health data collection and reporting are put in place, there is a risk that this unnecessarily 
enforces a uniform style of living, in accordance with data. That said, openness could also 
mean tolerance to diversity. The training of AI systems must also reflect diversity. As humans 
have a priori hypotheses and do not see the biases they build into the AI models, the models 
sometimes make the wrong predictions. If the sample size is small compared to the number of 
features, how do we train and use the AI models properly?  
Openness does not automatically produce data accessibility. Data is often in isolated islands, 
making it hard to see the big picture. If data were only accessible to pharma, then data would 
chiefly be used for drug development. If data is open, we can use it for many purposes, and 
some of those we can not predict now. A security risk is the incentive to generate realistic fake 
data. Such fake data must be possible to identify and avoid. Health data is also special, as 
compared to for instance data from the process industry, and often even more sensitive. 
Experimental data and real world data have different meanings. The former will be replicable, 
while in the real world, reproducibility makes no sense, as everyone is different. Experimental 
data is likely to fabricate the explanation based on the hypothesis. In real world data, the danger 
is instead that we can not analyse the full data, so we can not know if it applies to the general 
population. Openness thus has a role to play also in generalisability: one way of doing 
successful transfer learning is by training on the population of one country and testing it on 
that of another.   

4. Discussion 
Reference datasets provide AI researchers with a concrete opportunity to apply and 
systematically evaluate a range of methods in the context of life sciences data. Life science 
researchers, on the other hand, gain a deeper understanding of how their data need to be 
described (annotated) and structured (data format) so that they are most useful for AI research, 
and for which questions AI would be the method of choice for gaining biological or medical 
insights.  
Research data is usually produced with a specific question in mind. The experimental design 
and employed protocols are optimized for the question at hand, which includes the number and 
types of sample replicates and amount of corresponding data, specifically in the context of 
sequencing data. Variations in biological datasets typically originate from several sources 
including the biological question addressed by the study design. Moreover, additional 
variances will be present in the data as the result from unknown sources based on experimental 
techniques or practical aspects.  

Many clinical and basic (pre-clinical) research groups are collecting material including human 
samples, material from cell culturing as well as samples from animal models. Prerequisites for 
comparing datasets generated by different research groups include the ability to understand: 

● the details about samples and conditions including experimental details, cell types and 
animal models, patient characteristics, etc.  

● the technical details regarding the technologies used for material preparation, and 
experimental protocols.  



Documentation should be catered to the needs of AI researchers and contain the details needed 
to use the dataset. The size of the datasets has to be sufficiently large to allow for the testing of 
AI methods. A ground truth has to be provided to allow application and supervised methods as 
well as for the evaluation of classification results. The access to the datasets has to be easy and 
the dataset has to be structured in a way that allows directly using it without further 
reformatting. Life sciences data are typically uploaded to a data repository such as the Sequence 
Read Archive (SRA) or the Gene Expression Omnibus (GEO). Such repositories require 
describing the provided dataset with a rather minimal level of detail limiting the usability of 
such datasets beyond the purposes of the original publication. Also, aspects important for 
analysis of the dataset with AI methods are not considered by such repositories. Additional 
data that may also capture aspects relevant for further analysis are often published as 
supplemental tables, not adhering to any specific format and often without explicit mappings 
to the repository data. Data Centres facilitate the description and collection of research data 
produced at universities or research institutions. The main goals of Data Centres include 
making research data reusable beyond the initial aims for which these data have been produced.  
 
Explanation is a central goal of science. At the same time, most prediction procedures 
developed using machine learning and multimodal clinical data are essentially separate from 
causal explanation. We would argue that explanation and prediction are best understood in 
light of each other, which presents barriers, including: 

● The quality of human data is an obstacle to accurate predictions. 
● To correctly describe time series data in computable format that ties to a causality 

model is an obstacle to apply AI in data analysis. 
● There is still a need to develop quantitative means to identify distance and similarity 

between different sommatic and mental states represented by multimodal variables, 
and to predict such states for each individual. 

● A frame of guidance for developing an assured and/or trustworthy architecture for 
medical data-driven solutions in health care. 

 
In our particular context, the question of ownership of the process for developing and 
maintaining reference datasets have been presented to the leaders of the three participating 
organisations. We note that there are low-hanging fruits in that some reference datasets could 
be named and described in plenum at the symposium, but also that a sustainable plan needs to 
be developed for how to best make datasets available, and how to feedback results and opinions 
to their owners. This is a generic problem not related to the three organisations as such. A year 
after the symposium, an online two-hour mini-symposium were held, at which the preliminary 
contents of this essay were presented. The main stakeholders from the three institutions were 
present: the leadership, principal investigators, database experts, reference data set owners and 
their prospective future users. This closed the loop of the need for reference data sets voiced at 
the fifth symposium in the series, and discussed at length at the sixth. This essay will be shared 
as a firestarter for discussions at the seventh, planned for Stockholm in the autumn 2021.  
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