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Abstract

The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the

Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of

the facility user program since 2009, and more than 250 individual user experiments have been

performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge

performance in terms of beam intensity, energy resolution, and flexibility to trade one for another.

Experiments are being routinely performed with the sample at extreme conditions: T . 0.05 K,

p & 2 GPa and B = 8 T can be achieved individually or in combination. In particular, CNCS is

in a position to advance the state of the art with inelastic neutron scattering under pressure, and

some of the recent accomplishments in this area will be presented in more detail.

Note: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725

with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting

the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-

up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow

others to do so, for United States Government purposes. The Department of Energy will provide public

access to these results of federally sponsored research in accordance with the DOE Public Access Plan

(http://energy.gov/downloads/doe-public-access-plan).
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I. INTRODUCTION

The Cold Neutron Chopper Spectrometer (CNCS) is one of the direct geometry, inelastic

neutron scattering spectrometers that the Spallation Neutron Source (SNS) in Oak Ridge

operates as part of its facility user program. This instrument has now been operating

for about 8 years. It has seen a number of incremental upgrades during this time, which

have resulted in an overall significant improvement of its performance. In this paper the

most important of these developments are being described, and some of the science is being

reviewed that has been done with the instrument.

CNCS is a general-purpose direct-geometry inelastic time-of-flight (TOF) spectrome-

ter optimized for cold neutrons. [1] It complements the other direct geometry time-of-

flight instruments at the SNS: The wide angular range chopper spectrometer (ARCS),

the fine-resolution Fermi chopper spectrometer (SEQUOIA), and the hybrid spectrometer

(HYSPEC). [2] The general layout of the instrument is shown in Fig. 1. CNCS receives beam

from a cold coupled moderator (liquid H2) with a peak brightness at ∼ 10 meV neutron

energy. [3] Short pulses of a monochromatic neutron beam are directed onto the sample,

and the location (scattering angle) and time-of-flight of the detected neutrons are used to

determine the energy and the momentum exchanged between neutron and sample in the

scattering event. A pair of high speed choppers is used to select the neutron energy Ei via

their relative phase: a Fermi chopper at 6.41 m (distance from the moderator surface) and a

high-speed double-disk (HSDD) chopper at 34.78 m. The energy resolution is mostly deter-

mined by the double disk chopper settings, and can be varied independently of the chosen

value of Ei. Each of the two HSDD chopper disks has three slits with different widths [1],

giving the operator many options to change the burst time by re-phasing to a different slit,

or by changing the chopper speed. Two bandwidth choppers at 7.52 m and at 33.02 m cut

out unwanted neutrons from other frames. The neutron guide is mostly straight, but its

central part is horizontally curved to bring the sample position out of direct line-of-sight

from the source. Thus the guide acts as a filter for high energy (& 100 meV) neutrons which

cannot make the required reflections in the supermirror coating.

Neutron data are recorded in event mode, which is now becoming the standard method

at pulsed spallation neutron sources. For each detected neutron, the time, pulse ID and

pixel ID are stored in a list. The pulse ID refers to the source pulse that generated the
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neutron, and has to be determined carefully when the instrument (like CNCS) does not

always operate in the first frame (which is to say, when not all neutrons have been detected

by the time the next pulse hits). Complementing slow controls data (such as temperatures,

motor positions, chopper phases, etc.) are all stored with time stamps which enables one

to correlate them with counted neutrons during or after acquisition. Taking data in event

mode is a very powerful approach, as it offers a maximum of flexibility to filter and analyze

the data after the acquisition ended. In event mode it is also straightforward to perform

pump-probe and time-resolved experiments. High performance software packages exist to

reduce and scientifically analyze the data. [4–6]

II. MODIFICATIONS SINCE START OF OPERATION

A. Focussing guide end section

A new guide end section has been available since 2014. This device makes use of m = 6

supermirrors, which were not commercially available at the time CNCS was designed and

built. It optionally replaces the previously existing, ∼ 20 cm long last guide section directly

in front of the sample position. Due to their parabolic shape the mirrors focus the beam

at the sample position to a ∼ 20 × 15 mm spot (height × width). A high resolution image

of the beam at the sample position, with the new guide section, is shown in Fig. 2. This

is a fairly small beam for this type of instrument, but it corresponds well to the typical

sample dimensions which are . 1 cm for single crystals (see section III below). Compared

to the traditionally used last guide section [1], the corresponding intensity gain for small

crystal samples is about a factor of ∼ 4, which comes mostly at the cost of increased vertical

divergence. Since the vertical direction (in which the Q resolution is broadened) lines up

well with Debye Scherrer cones, the new guide is also very beneficial for powder samples,

even when they are large enough to be not fully illuminated by the beam. This proves to

be a crucial intensity gain, in particular in experiments with small samples which are the

vast majority (see section III below). The new guide end section does impact the horizontal

divergence only marginally, which is set by the m = 2− 3.5 mirrors further upstream in the

guide. The ‘new’ and ‘old’ guide end pieces can be readily exchanged. While the ‘new’ guide

is also most often used for polycrystalline and liquid samples, the ‘old’ guide is preferred in
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experiments that aim to measure excitations in single crystal samples with good Q resolution

in all three spatial directions simultaneously. Such experiments account for ∼ 10 − 20% of

beam time use. Most experiments with crystals, however, focus on the scattering in one

plane, which is arranged to be horizontal in the laboratory frame. In this situation the

vertical Q resolution is of lesser importance and the focusing guide section is thus preferred.

B. Fermi chopper rotor

The original CNCS design placed a high value on achieving very good energy resolution.

This can be seen, for example, in the guide design. The guide narrows down significantly

towards its end, which allows one to achieve very short burst times with the double disk

chopper. As a result, the beam at the sample position is quite narrow, ∼ 15 mm, which

limits the size of single-crystal samples one can measure (crystals are being rotated during

a measurement which implies that they should be fully illuminated by the beam because

an intensity change upon rotation is hard to correct for). Secondly, in order to achieve very

good resolution, the Fermi chopper in the front was originally equipped with a rather tight

slit package.

During the early years of operation it became clear that achieving higher flux on sample –

at the expense of energy resolution – was more important. Therefore, a new Fermi chopper

rotor was designed and installed during a facility shutdown in 2014. Like the original rotor,

it features two slit packages on the same vertical axis of rotation, which can be selected with

a vertical translation of the chopper. The main difference between the old and the new slit

packages is that the new slit packages are coarser than the old ones. As a result, the burst

times of the two high-speed choppers are now better matched, in typical run conditions, to

the respective distances of the choppers to the detector, improving the intensity vs energy

resolution relationship. [7] The intensity gain (for the same resolution) is about ∼ 25% on

average. This gain outweighs the shift in the resolution range (towards coarser resolution)

in which one can operate, because only very few experiments require the best available

resolution. A current measurement of the energy resolution at the elastic line, using a

vanadium reference sample, is shown in Fig. 3.
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C. Dedicated cryostat

CNCS has a dedicated orange helium flow cryostat with a working temperature range

of ∼ 1.8 − 360 K. The diameter of the variable temperature insert (VTI) is 100 mm. For

studies with magnetic samples, the cryostat is often used with a 3He insert that extends the

available temperature range on the lower end to ∼ 0.24 K. The insert routinely holds base

temperature for more than 5 days without a need to recondense. The VTI in the cryostat

features a custom Cd liner that shields scattering directions without detector coverage. This

is an essential feature to reduce background from incoherent backscattering or near Bragg-

edge scattering in the aluminum of the cryostat tail. The Cd shield has a dedicated entry

port for the beam and also a beam stop on the other side (inside the VTI). This implies that

the cryostat can not be rotated on the sample table. Therefore single crystal samples are

usually mounted on a stick that can be rotated inside the cryostat. Since data are recorded

in event mode, this rotation can be continuous while counting scattered neutrons, as opposed

to the more traditional way of recording individual runs sequentially at fixed positions of

the sample rotation axis. Both these modes are operational and in use.

The large diameter of the cryostat’s VTI also enabled the design of a 3-sample changer

stick that is shown in Fig. 4. The purpose of this device is to mount three powder samples

simultaneously and to save time with temperature changes when several samples are being

measured in an experiment. The three samples can be rotated around an off-center vertical

axis while the cryostat is stationary. This motion allows to put one sample in the beam

while the other two are on the side. The triangular piece between the three samples (see

Fig. 4) is made of boron nitride which absorbs neutrons, thus shielding the two unused

samples further from the beam and reducing the potential for secondary scattering. This

device is very popular with users who measure many samples at several temperatures in one

experiment. A future upgrade could add a second stage of three samples below the existing

set of three, such that a total of six samples would be in the cryostat at the same time. One

would likely have to use somewhat shorter powder cans than the current standard design.

A vertical travel of the cryostat of the order of ∼ 5 cm during a measurement is feasible.
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D. Planned future development – polarized beam

A first test experiment with polarized beam has been attempted at CNCS but more

development work is needed before such an option can be offered to the user program. The

setup made use of polarized 3He cells both for polarizing the beam and for analyzing the

polarization of the scattered beam. On the analyzer side, there is virtually no choice because

of the desired large solid angle. The incident beam can also be polarized with a transmission

polarizer based on a supermirror, but this is much harder to do because more modifications

of the existing infrastructure would be necessary.

It has been recognized that an inelastic time-of-flight spectrometer with wide angular cov-

erage in combination with polarized beam would be of great value for studies on quantum

critical phenomena, topological states of matter, quantum magnets, unconventional super-

conductors, and geometrically frustrated magnets. [8] Efforts at the Institut Laue-Langevin

(ILL), [9] the ISIS facility at the STFC Rutherford Appleton Laboratory (United King-

dom), [10] the Japan Proton Accelerator Research Complex (J-PARC) [11] and SNS [12]

are all aimed at increasing the area of solid angle covered by the detector with simultaneous

polarization analysis. With the exception of D7 at the ILL [13] (which has an option to run

with a Fermi chopper) and HYSPEC at SNS [12], inelastic neutron scattering with polarized

beam is currently limited to triple-axis type instruments which cannot cover large areas of

(Q,ω) space in adequate time. The ongoing trend in materials science towards more com-

plexity, however, means that broad surveys in reciprocal space will be increasingly needed

to identify the key dynamical signatures in the scattering. An unambiguous separation of

lattice and spin dynamics will become a key requirement, and ‘xyz’-polarization analysis is

the only available technique known to allow this at all scattering angles simultaneously. [14]

III. SCIENTIFIC USE OF THE INSTRUMENT

Like most neutron sources, SNS runs an international user program and the available

beam time is awarded to proposals after a competitive review process has been held. At

CNCS this competition is particularly strong, and only ∼ 20% of all requests for beam time

can be accommodated. The use of the beam time is driven by community demand. The

vast majority of experiments conducted at CNCS address topics in hard condensed matter,
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such as magnetism, correlated electrons, superconductivity, phonons and heat transport, and

energy materials. Other science areas such as protein and polymer dynamics, glass transition

(boson peak), or the dynamics of atoms and molecules in confined geometry combine for

∼ 15 % of the time used.

Nearly ∼ 75 % of the beam time at CNCS is used to measure collective excitations in

single crystals. Single crystal measurements play to the full strength of the instrument with

its large detector area, accessing all three spatial directions simultaneously, and the ability

to adjust the measurement range and resolution to the need of the particular system studied.

With the focusing guide the Q resolution in the vertical direction is relaxed but still good

enough to measure a dispersion in this direction.

A. Measurements at pressure

Pressure is a relevant thermodynamic variable for many materials. For example, applied

pressure has a profound effect on the critical temperature in many superconductors, [15–17]

and many materials are known to be superconductors only under pressure. [18] This can be

understood considering that the parameters of a material which are mainly important for

its superconducting properties, namely the electronic density of states at the Fermi energy,

the phonon frequency spectrum, and the electron-phonon coupling, all may be sensitively

pressure-dependent. Metal-insulator transitions are another example for a transition of the

electronic state in a material that can be induced by pressure. [19–21]

Neutron scattering under pressure presents challenges, and inelastic scattering in partic-

ular must be considered very difficult. The main reason is that the available sample volume

is inevitably small. Neutron scattering is an intensity limited technique, and while diffrac-

tion can be done with very small samples, [22, 23] the volume limitation has in the past

often pushed the feasibility limit beyond what is possible with inelastic scattering. Another

difficulty lies in the relatively large amount of material that makes up the equipment that ap-

plies pressure, which cannot all be shielded from the beam and causes significant background

scattering. For these reasons, one only finds a limited number of inelastic neutron scattering

studies in the literature, mostly in cases when gas or liquid cells could be used which allow to

apply modest pressure, . 0.5 GPa, to a larger sample volume, and on materials that scatter

well. [24–28] CuBe clamp cells, McWhan cells and sapphire cells have also been occasionally
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used successfully for inelastic scattering. [29–31] Scattering from magnetic systems face the

additional challenge that the sample must be cooled, most often to cryogenic temperatures.

Spin waves in elemental magnets Tb [32] and Fe [33] have been studied at pressure but the

involved temperatures were relatively high, 90 K and 300 K, respectively, whereas in the

pioneering work on single-crystal FeCl2 [34] a base temperature of 4 K was reached. Crystal

field excitations in magnets have also been occasionally studied at high pressure [35–37].

At CNCS, gas pressure cells have been used up to ∼ 0.5 GPa. The cells are made from

Al alloy and can be held in the cryostat at base temperature. The pressure in the gas cell

can be applied in-situ. For example, the research on supercooled confined water performed

recently at CNCS shows what can be achieved with theses cells. The dynamics of deeply

cooled water in a nano-porous silica matrix (MCM-41) was studied in the temperature range

∼ 160 K to ∼ 230 K at pressures up to ∼ 0.5 GPa, using a gas pressure cell. [38, 39] The

results of these experiments were interpreted as to show the existence of two distinct liquid

phases in this range of pressure and temperature, which differ in their densities and local

structures of the water. Particularly it was shown that the behavior of the Boson peak of

the confined water is strongly correlated to the low-density and high-density phases of the

confined water. These studies significantly deepen our understanding of the thermodynamic

behavior of supercooled confined water.

In order to access higher pressure in a volume large enough for inelastic neutron scattering,

modern clamp cells are now available that have been designed with the particular needs of

scattering experiments in mind, in terms of materials choices, the amount of material in

the beam, and the ability to cool the cell to cryogenic temperatures. [40, 41] A clamp

cell currently in use at CNCS, which can reach pressure up to ∼ 2.0 GPa in a volume of

∼ 250 mm3, is shown in the lower part of Fig. 5. A test in a 3He insert has shown that

the thermal contact to the sample (through teflon capsule and pressure medium, fluorinert)

is sufficient to cool the sample down to ∼ 0.3 K. The test was conducted offline with a

calibrated RuO2 sensor in the sample position. The clamp cell has to be warmed and

removed from the cryostat in order to change pressure. The total turnaround time between

base temperature measurements at different pressures is ∼ 6 hours with the cryostat alone

(base 1.8 K) and ∼ 12 hours with the 3He insert (base 0.3 K). The clamp cell is also small

enough to fit the standard size of a dilution insert (diameter 32 mm) that can be placed in

the bore of an 8 T cryomagnet available at SNS. One can thus measure a sample of ∼ 4 mm
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diameter, ∼ 20 mm long, at CNCS at 2 GPa, 8 T and 50 mK simultaneously. While it is

technically possible to conduct such a measurement, a successful experiment under these

conditions has yet to be performed. The pressure cell (walls of steel or hardened alloy)

with fluorinert and teflon capsule, the magnet with its reduced outgoing divergence, and the

dilution insert with another heat shield all add scattering material to the setup and reduce

the signal to background ratio.

Using a clamp cell of this design, the pressure dependent magnetic excitation spectrum

in the S = 1/2 quasi-two-dimensional gapped quantum antiferromagnet (C4H12N2)Cu2Cl6

(PHCC) was studied at CNCS. [42] The single crystal used in the CNCS experiment weighed

150 mg. The pressure cell was mounted inside a helium flow cryostat and data were collected

with incident energy of Ei = 4.2 meV at T = 1.5 K. The full S(Q,ω) map was recorded by

making 180 deg. rotations with 1 deg. step size. At ambient pressure and cryogenic tem-

perature, PHCC does not order magnetically, and the ground state spin singlet is separated

by a gap of ∼ 0.98 meV from an S = 1 triplet. Applying pressure, the gap can be reduced,

and it was shown that at 0.9 GPa and above, the excitations are gapless. This agreed with

the findings of an independent µ+SR experiment which observed a quantum critical point at

p = 0.43 GPa and long-range magnetic order above. Thus it could be shown that the quan-

tum phase transition in PHCC under pressure is driven by the weakening of a single Cu-Cu

superexchange pathway. Besides, at high pressure a sizeable spin wave dispersion along the

interlayer direction was observed implying substantial three-dimensional correlations.

A larger clamp cell, that pushes the achievable pressure to ∼ 3 GPa, was used to inves-

tigate the pressure dependence of fast rotational diffusion of water molecules in the mineral

hemimorphite Zn4Si2O7(OH)2·H2O at cryogenic temperatures. At ambient pressure the

mineral belongs to the orthorhombic space group Imm2. [43] The structure consists of rings

of corner-sharing ZnO4 and SiO4 tetrahedra which make up channels. The water molecule

occupies, on average, a symmetrical position in the channels, resting entirely upon the crys-

tallographic a − c plane. A water molecule forms four (almost planar) hydrogen bonds

with hydroxyl groups in the hemimorphite framework. Application of hydrostatic pressure

above 2.5 GPa causes the mineral to undergo a structural phase transition from Imm2 to

Pnn2. [44] The asymmetric deformation of the channels leads to a shorter H2O-OH contact,

and the planar hydrogen bond network becomes tetrahedrally coordinated. By changing

the local crystal environment, the application of high pressure to hemimorphite is thus ex-
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pected to profoundly alter the diffusive dynamics of confined water molecules. Fig. 6 shows

quasi-elastic neutron scattering (QENS) spectra of hemimorphite under hydrostatic pressure

measured at CNCS at 2 K and 130 K (with an incident neutron energy Ei = 3 meV). At

low temperatures, water dynamics in hemimorphite is undetectable at ambient pressure and

at p = 3 GPa, and the measured S(E) represents the resolution function of the spectrome-

ter. At T = 130 K the spectrum of hemimorphite at ambient pressure shows strong QENS

broadening due to fast rotational diffusion of water, while the data for p = 3 GPa are very

similar to those at 2 K. These measurements demonstrate that water in hemimorphite in

the high pressure phase (being connected to the hemimorphite cage via tetrahedrally co-

ordinated hydrogen bonds) does not show fast rotational diffusion like at ambient pressure

where the water being coordinated via planar hydrogen bonds.

B. User experiments

One of the greatest strengths of CNCS is the ability to measure collective excitations

in crystals, simultaneously, in the energy domain and in all three spatial directions, with

adjustable energy- and Q-resolution. One of the science areas that exploits this ability is

the research on thermoelectric materials. Here, the main question addressed with inelas-

tic neutron scattering is that of the microscopic origin of the unusual strong scattering of

the heat carrying phonons in materials such as PbTe [45, 46], AgSbTe2 [47, 48], SnTe and

SnSe [49, 50]. The dispersion and line widths of the phonons need to be measured accu-

rately, in various directions, and with good Q resolution. It is also essential to complement

the measurements with density functional theory (DFT) calculations in order to achieve a

consistent understanding of the measurements. The experiments found that the origin of

the strong phonon scattering is quite different in these materials. In PbTe a strong an-

harmonic repulsion was observed between the ferroelectric transverse optic phonon and the

longitudinal acoustic modes. This is the signature of an underlying anharmonic interaction

between these phonons. In AgSbTe2 it is an atypical degree of complexity of the crystal

structure at the microscopic level that was identified as the source of an unusual level of

phonon scattering. This material forms nano-sized domains which differ in the near neigh-

bor ordering of some of the ions. The phonons cannot propagate undisturbed through this

structure, which manifests itself in a much broadened phonon line width when compared to
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PbTe for example. SnSe on the other hand is near a lattice instability, leading to strongly

anharmonic interaction potentials between Sn and Se.

Excitations in quantum magnets with low energy scales are another research area in which

CNCS is designed to make contributions. [51–54] For example, geometrically frustrated

magnets [55–57] are often characterized by a macroscopically degenerate ground state, and

for this reason tend to have a high number of fluctuation modes at low energy that may

persist to very low temperature. The good energy resolution provided by cold neutrons is

therefore ideally suited to studying the spin fluctuations in such systems. In multiferroic

materials [58–60] the energy scales are also often low.

A magnetic field is another external parameter with which a spin system may be manipu-

lated. The critical magnetic fields associated with low energy phenomena are also often low

and technically within reach, which is a good match for an instrument like CNCS. Fields

up to 16 T have been reached at CNCS in the past. [61] However, integrating a split pair

magnet into an instrument such as CNCS also does present challenges. Split pair magnets

are the most commonly used design in neutron scattering applications, because the scattered

beam can exit at any angle in the scattering plane. The design requirements of such magnets

imply that the solid angle in which scattered neutrons can be detected must be restricted

to some extent. [62] Modern design solutions allow one to trade off vertical divergence for

scattering angle range and closely match the host instrument geometry, thus minimizing

intensity losses. The 8 T magnet currently in use at the SNS facility allows for an outgoing

divergence of the scattered beam of ±12◦ which is a significant improvement over previous

designs (the scattered beam can be detected in a solid angle of nearly 2 sr). It also avoids

the use of aluminium spacers in the scattered beam. The inner bore has a diameter of

34 mm at the sample location and the beam can be about 30 mm tall at this point. A recent

development that has the potential to extend the accessible field range, when combined with

time-of-flight methods, is that of pulsed magnets. [63]

Both magnetic and structural excitations are of interest in studies of the unconventional

supercondutivity seen in materials with a structural motif of FeAs, FeSe or BiS2 layers. [64–

71] Many of the recently discovered ‘unconventional’ superconductors possess magnetic ions

and long range magnetic order in at least one thermodynamic phase. Superconductivity is

typically induced by doping charge carriers, which at the same time reduces the magnetic

ordering temperature or suppresses the ordering completely. A common feature is the exis-
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tence of a resonant magnetic excitation within the superconducting phase, which is localized

in both energy and wavevector. Such excitations can be directly seen with inelastic neu-

tron scattering, but it is to date not fully understood how exactly they are connected to

superconductivity in these materials. This is a field of strong current interest in condensed

matter physics.

While the majority of experiments conducted at CNCS are hard condensed matter studies,

quasielastic scattering studies in soft matter materials make up a non-negligible part of the

science program at CNCS. In the area of polymer and protein dynamics, various studies

focused on the role of hydration water, [72, 73] the nature of the collective vibrations (“boson

peak”), [74, 75] and the role of the secondary structure for the rigidity and functionality of

these molecules [76–78]. These experiments are generally not intensity limited, unless the

samples are fully deuterated. A full spectrum may be collected at CNCS in less than an hour

on a 100 mg sample. An upgrade offering polarized beam would therefore be particularly

beneficial for this science, as it would enable one to disentangle coherent (collective, many-

particle) and incoherent (single-particle) dynamical modes in soft (hydrogenous) materials,

which may overlap in the time domain. [79, 80] This would make it possible to rigorously

test model assumptions that one currently has to make in order to separate the different

processes in measurements with unpolarized neutron beams.

It is known that the dynamical behavior of atoms and molecules in confined geometry

can be substantially different from the bulk. [81] Rather than near correlation shells of its

own species, an individual molecule will see a material-dependent wall potential. For ex-

ample, the dynamics of H2O confined in ∼ 5 Å diameter channels of beryl single crystal

have been studied by using QENS and inelastic neutron scattering (INS) at CNCS and

SEQUOIA. [82, 83] The QENS study with energy resolution 0.25 meV with the scattering

momentum transfer along the channels showed gradual freezing of water molecule dynamics

at temperatures below ∼ 200 K, whereas the dynamical features was generally much weaker

with the momentum transfer perpendicular to the channels. At higher temperatures the

data were described as two-fold rotational jumps about the axis coinciding with the direc-

tion of the dipole moment (perpendicular to the channels), with a residence time of 5.5 ps at

225 K. The INS spectra of water in beryl measured at CNCS and SEQUOIA in the direction

perpendicular to the channels revealed a number of peaks which were uniquely assigned to

water quantum tunneling. In addition, the water proton momentum distribution measured
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with deep inelastic neutron scattering (VESUVIO, ISIS [84]) directly showed coherent delo-

calization of the water protons in the ground state. The observation of multiple tunneling

peaks and a coherent delocalization of protons over all possible positions across the beryl

channel allowed the view of the tunneling water as “a new state of the water molecule”. [83]

IV. CONCLUSION

CNCS offers excellent beam intensity and resolution for inelastic and quasi-elastic neutron

scattering experiments in the cold and thermal neutron energy ranges. The instrument

performance allows to push the feasibility limits for successful user experiments towards

smaller samples (∼ 100 mg of non-hydrogenous material) and high pressure (in combination

with strong magnetic field and/or very low temperature, if desired). The instrument has

now a solid track record of answering questions at the forefront of many areas in condensed

matter physics, such as quantum magnets, unconventional superconductors, geometrically

frustrated magnets, thermoelectric materials, polymer and protein dynamics, and matter in

confined geometry.
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FIG. 1. Schematic layout of CNCS, viewed from the side (top part of figure) and from the top (bot-

tom part of figure). The location of various key components is indicated relative to the moderator

surface. The drawing is not to scale.
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FIG. 2. A high resolution photograph of the beam at the sample position, taken with the new

focussing guide end piece. Comparing with the beam from the traditional, not focussing guide end

section (see Fig. 2 in Ref. [1]), this beam is considerably more compressed in the vertical direction.

The fiducial was placed for reference only. This picture was taken with 1 meV neutrons.
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FIG. 3. A current measurement (with the new Fermi chopper rotor) of the energy resolution at the

elastic line, using a vanadium reference sample. Three representative settings have been chosen

which cover most of the available range of resolution settings. A 2.5% resolution is indicated by the

dashed line. Going from HF (‘high flux’) to AI (‘intermediate’) mode, the intensity loss is about

a factor of ∼ 3. Going from AI to HR (‘high resolution’), the loss factor is ∼ 4. These modes pair

different slits in the double disk chopper.
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FIG. 4. The 3-sample changer stick photographed from below. The white triangular piece is made

from absorbing boron nitride. The powder cans are 5/8” in diameter, a standard size at CNCS

that matches the beam width. These cans are typically used with annular inserts.
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FIG. 5. The clamp pressure cell in use at CNCS. Upper part: Characterization of the thermal

contact between sample and cold finger (left), and neutron transmission measured at CNCS (right).

Lower part: Photograph of the cell and inner components. The crystal sample is about 4 mm in

diameter and 15 mm long. This cell fits a standard dilution refrigeration insert which can be placed

in the bore of a cryomagnet.
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FIG. 6. Inelastic neutron scattering spectra of water in hemimorphite measured at CNCS at

different temperatures and pressures. Strong QENS broadening is visible for hemimorphite at

130 K and ambient pressure due to the fast rotational diffusion of water molecules, while the data

for p = 3 GPa almost coincide for T = 2 K and T = 130 K, showing the absence of QENS

broadening through the entire temperature range.
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