OUR VISION
We are advancing knowledge about life and strive towards better health for all.
Just when the world began to see signs of an end to the pandemic, the next major crisis kicked off: Russia invaded Ukraine. As people flee their country and see their homes and communities destroyed, we find ourselves facing a new, large-scale health crisis. As a medical university we are better prepared this time: COVID-19 changed the world, and Karolinska Institutet (KI) with it. We have intensified our efforts through our new Centre for Health Crises, and early on under the pandemic we established several resource teams, which we can now make use of. The two years of the pandemic have taught us many lessons and given us valuable experience of handling a health threat – and this is what we are now building on.

The war in Ukraine is having enormous consequences across national boundaries and for us as a university. International collaborations are a natural part of KI’s everyday activities, and as a university we have both a moral and a formal responsibility to interact with the wider community. An international health and humanitarian crisis presents considerable challenges with respect to medical needs and knowledge transfer. Thus, the war in Ukraine – like the current pandemic – puts us to the test and calls for our competence. As a university that seeks to advance knowledge about life and strive towards better health for all, we have an imperative to contribute when a crisis strikes.

As president of Karolinska Institutet, I am humbled and impressed to witness the commitment of our students and employees. Our contributions to society are vital and take on even greater importance when health is threatened on a global scale. With our world-class education, doctoral studies and research we are poised to help ensure that health is secured and improved, equitably and sustainably, at home and abroad. This is what must be our common vision as we face the future. Welcome to Karolinska Institutet.

Ole Peter Ottersen
President, Karolinska Institutet

Our contributions to society are vital and take on an even greater importance when health is threatened on a global scale.
MASTER’S STUDIES FROM TRUE MASTERS

Karolinska Institutet is a one-faculty university dedicated solely to the medical and health sciences and is consistently ranked in the top 50 universities globally and the top 10 medical universities in Europe.

Karolinska Institutet (KI) offers the widest range of medical education under one roof in Sweden. Most of the study programmes lead to professional degrees and are taught in Swedish but have extensive exchange collaborations and offer study options in English for exchange students. KI offers one bachelor’s programme and ten master’s programmes in English with an international focus. The programmes proactively incorporate an interactive teaching model emphasizing informal and close contact between students and teachers. A master’s degree from KI gives you a competitive advantage on the global labour market and prepares you for doctoral studies if you wish to pursue an academic career.

Helen Nguyen
Student in the Joint Master’s Programme in Health Informatics:

“I am really thriving at KI – their teaching style constantly nurtures my curiosity through open discussions and student collaboration. One of the great things about the Master’s in Health Informatics is that it brings together computer science and healthcare students. I feel privileged to be learning and discussing challenging questions with such a perceptive and amongst both culturally and professionally diverse group of students.”

Julio Sosa
Student in the Master’s Programme in Health Economics, Policy and Management:

“I chose KI because of the high-quality education provided by renowned researchers and the stimulating international environment. I genuinely like Stockholm and the healthy work-life balance that characterizes Scandinavian culture.”

SHORT FACTS

Global Bachelor’s Programme
- Biomedicine

Global Master’s Programmes
- Biomedicine
- Health Informatics
- Molecular Techniques in Life Sciences
- Nutrition Science
- Public Health Sciences
- Toxicology
- Translational Physiology and Pharmacology

You can find all their educational programmes online.

Contact us
ki.se/masterstudies
DOCTORAL EDUCATION IN THE HEALTHCARE SECTOR

The close collaboration between KI and the Stockholm regional health authority means that research, education and clinical activities overlap and complement one another. Many who are employed in the Swedish healthcare sector pursue part-time doctoral studies in parallel with their work. Our clinical doctoral students include physicians, psychologists, nurses, speech therapists, and physiotherapists, along with many other healthcare professionals.

There are over 2,000 doctoral students at Karolinska Institutet (KI) and close to 350 new admissions each year. Many of our doctoral students have an overseas background, and our extensive international collaborations provide excellent opportunities to network with research environments around the world.

As a doctoral student, you will join one of KI’s research groups and carry out a research project under professional supervision. The research project is complemented by courses and other educational activities required to achieve degree outcomes.

All vacant doctoral positions are advertised on ki.se, where interested applicants can find projects throughout KI’s medical research fields. If you are admitted, you will be employed with a contractual salary.

You will obtain your doctoral degree once you have acquired the knowledge and skills described in the degree outcomes and written and publically defended a thesis. You will then be invited to take part in a conferment ceremony at the Stockholm City Hall, where you will receive a traditional doctoral hat to symbolize that you have achieved the highest academic level and that you are now an independent researcher ready to start your future career.

Doctoral studies at Karolinska Institutet will give you advanced skills in your scientific field and career opportunities in a wide variety of areas.
New core facility offers world-class imaging

A new cryogenic electron microscopy (3D-EM) facility is now in operation at Karolinska Institutet. The facility has a bank of ultra-modern cryo-electron microscopes that can be used by the university’s own researchers and external customers. The 3D-EM technique enables the creation of high resolution 3D images to help scientists understand, for example, the molecular structure of a protein complex in its natural state. It also offers good opportunities for specimen production and for studying cellular material and tissue samples using cryo-electron microscopy.

Collaboration will accelerate precision medicine

A joint centre for precision medicine – The Precision Medicine Centre Karolinska – has been established by Karolinska Institutet and Karolinska University Hospital.

Precision medicine is about adapting diagnosis, treatment and follow-up care to individual patients’ unique circumstances. The new centre will broaden the collaboration that has already led to the implementation of whole-genome sequencing for the clinical diagnosis of rare congenital diseases. The centre will support the introduction of precision medicine into larger disease groups and more diagnostic fields, with rare diseases and cancer as two initial areas of focus.

Did you know that...

The Swedish Twin Registry contains data on some 87,000 pairs of twins and is managed by Karolinska Institutet. The registry was founded in the 1960s and is the largest of its kind world-wide. The research conducted with the support of the registry covers a wide range of public health issues, such as allergies, cancer, dementia and cardiovascular disease.

Investing in the science of tomorrow

From now until 2024, Karolinska Institutet will invest in the order of SEK 500 million in core facilities and expensive scientific equipment. In addition, some SEK 200 million are annually allocated to animal housing and funding of national infrastructures.

Karolinska Institutet offers advanced equipment and services in research areas such as biosafety, registries and biobanking, imaging, omics, bioengineering and e-health. Most of these core facilities were founded to meet the needs of our own researchers and have since been professionalised and developed to provide the technologies and methods of tomorrow within their respective fields.

A powerful resource fighting COVID-19

SciLifeLab is a national resource for pioneering technologies and expertise in molecular bioscience, with one of its nodes located adjacent to the KI Campus in Solna. With the support of Sweden’s largest private research grant body, the Knut and Alice Wallenberg Foundation, SciLifeLab has now become a powerful resource in the fight against COVID-19.

This research infrastructure brings scientists together across traditional boundaries and enable collaborations with industry and health care. Most of the available technologies can be used in a range of life science disciplines, and staff scientists offer support throughout the experimental process. SciLifeLab is jointly operated by Karolinska Institutet, the Royal Institute of Technology (KTH), Stockholm University and Uppsala University.
Innovation and collaboration

A COMPLETE INNOVATION SYSTEM

Karolinska Institutet is home to world-leading research that continuously adds to our understanding of human health. Researchers who want to take the next step towards implementing their results can turn to KI Innovations.

KI Innovations, which comprises both an innovation office and an incubator, guides researchers through the process of developing their discoveries into new products, methods, and services that benefit patients and society at large. Dedicated coaches experienced in commercialisation and implementation support researchers throughout the process, from ideas for life science innovations that lead to vital treatments to healthcare sector improvements.

KI Innovations offers a complete innovation system, providing knowledge and contacts both within and beyond the world of research, and has broad experience in transforming science to meet the needs of patients and society.

Innovation support entails providing researchers inspiration, personal advice, information, and opportunities to investigate the potential for converting their ideas into products or services. KI Innovations reviews how well ideas meet the needs of intended target groups and then investigates the possibility of developing and financing their commercialisation. KI Innovations can help you gain access to a large network of customers, users, and investors, along with training in entrepreneurship and innovation.

It is essential for patients and healthcare providers that research can be converted into products or services that benefit society. So explore your research-based ideas – KI Innovations is here to help!

GROUND-BREAKING DISCOVERIES

Karolinska Institutet has a proud history of discoveries that have improved the lives of people all over the world. Here is a snapshot:

- 1958 | THE PACEMAKER
 Ake Senning surgically implants the first pacemaker into a human being.

- 1962 | THE GAMMA KNIFE
 Lars Leksell develops and launches the world’s first gamma knife, a stereotactic device first used in the treatment of brain tumours.

- 1983/2012 | CUROSURF
 The Curosurf story is a tale of success. The drug has saved the lives of around one million premature babies worldwide. And the story is far from over.

- 2001 | MIPS
 Hans von Holst has, together with researchers from The Royal Institute of Technology (KTH), created MIPS, a technology that improves the protective properties of everyday helmets.

- 2014 | LEXPLORE
 Staffan Holmin has developed a microcatheter that delivers drugs directly to the body’s organs via blood vessels.

- 2016 | LEXPLORE
 The eye movements of a child reading may indicate an increased risk of dyslexia or reading difficulties. This discovery was supported by a private donation and formed the company Lexplore.

KENNETH CHIEN

Professor of cardiovascular research at the Department of Cell and Molecular Biology, Karolinska Institutet, and co-founder of Moderna, whose COVID-19 vaccine is the company’s first approved product:

“I co-founded Moderna in 2010 with the aim of developing mRNA-based drugs, not vaccines per se. Our finding that mRNA could stimulate heart and vascular regeneration formed a strong scientific foundation that launched the company. With AstraZeneca, it is now in clinical trials in heart patients.

In January 2020, CEO Stéphane Bancel directed Moderna to develop a COVID-19 vaccine. A year later it was approved in the United States and the European Union. The optimization of the core mRNA technology over the past decade is a major reason for this rapid success.

I’ve had assignments for bio-tech companies in parallel with my academic career for most of my professional life. It is important to make clear that academic work is all about making discoveries; you can develop them, but your lab must never become a company. I was a scientific advisor for Moderna for many years and feel honored and humbled that our science contributed to helping so many people around the world.”

Do you want to know more about innovation support?

Contact KI Innovations
karolinskainnovations.ki.se

DRIVE incubator programme

20 companies are currently active in KI Innovations’ DRIVE incubator programme.
"My research is on exosomes, which are tiny membrane bubbles that are released by cells. The small membrane bubbles are not waste, as initially thought, instead they are carriers of different signalling molecules that allow cells to communicate with each other in a fairly advanced way. Researchers around the world are now working on developing exosome-based therapies.

By studying exosomes from the bottom up, my group has developed better ways of extracting them from cells. We're now working on new methods of filling them with various substances, such as biological drugs, and making them efficiently release the substance into a recipient cell. We're also testing ways of attaching targeted proteins onto the surface of exosomes.

My goal is to develop a concept whereby we can reprogramme cells – for example in the liver or brain – to make them produce the therapy we want, pack it into exosomes and secrete it. This will be like using an organ as a drug factory that releases exosomes containing a therapy that can target other tissues. We call this in situ-engineering."

"As a clinically active tuberculosis researcher, I am accustomed to studying airborne pandemic contagion. In March 2020, an increasing number of disturbing X-rays from COVID-19 patients began to appear with images of white lungs, which means that they were severely inflamed.

We realized that we needed to find out more about the side effects of severe COVID-19 and quickly created a clinic at Karolinska University Hospital. We have now assessed about 800 patients with severe COVID-19 who have been cared for in hospital and 200 with prolonged symptoms receiving care at home.

In general, the patients have been multisymptomatic, experiencing severe fatigue, breathlessness and palpitations, muscle weakness and loss of smell. Among the home care patients, autonomic nervous system impact is common. Some have developed postural orthostatic tachycardia syndrome (POTS), which produces a sharp increase in heart rate and dizziness when they change position, but no drop in blood pressure.

All data is not fully analysed and more treatment studies are being planned. It is important to follow up and diagnose long-term COVID-19 patients. For patients, it means a lot to receive a diagnosis. From a research perspective, it is important to find out as much as possible about the disease and its long-term effects, and ultimately offer curative treatments."
New genetic clues on multiple sclerosis risk

A cell type in the central nervous system known as oligodendrocytes might play a different role in the development of multiple sclerosis (MS) than previously thought, according to a new study by researchers at Karolinska Institutet published in the journal *Neuron*. The study shows that oligodendrocytes and their progenitors have a different role in the development of MS than previously thought.

Cervical samples could reveal risk of breast and ovarian cancer

An international team of researchers from Karolinska Institutet, among others, has found a way to identify the risk of breast and ovarian cancer by analysing cell samples from the cervix. The method opens the possibility of measuring the risk of cancer in tissues other than those sampled. The findings are presented in two studies in the journal *Nature Communications*.

Continuous skin-to-skin contact saves lives

Continuous skin-to-skin contact starting immediately after delivery, and even before the baby has been stabilised, can reduce mortality by 25 per cent in infants with a very low birth weight. This is according to a study by researchers at Karolinska Institutet published in *The New England Journal of Medicine*. The study shows that skin-to-skin contact can be established in neonates with very low birth weight within minutes of birth.

EU grant for safer chemical handling

The EU has granted Karolinska Institutet support for 15 new projects within the Horizon Europe programme, the most important funding programme for research and innovation within the EU. The largest of them is PARC, which will contribute to safer chemical handling and improve the dialogue between researchers and authorities. Horizon Europe’s mission is to tackle climate change, to achieve the UN’s goals for sustainable development and to strengthen competitiveness and growth within Europe.

Mapping the genes behind eating disorders

By gathering saliva samples and survey responses from hundreds of thousands of people all over the world, researchers hope to learn more about the genetics behind eating disorders. This mapping of genes is led by Professor Cynthia Bulik from Karolinska Institutet and the University of North Carolina, USA, who is a world leading expert in causes and treatment of eating disorders. According to Bulik, it is a common misconception that eating disorders are caused by beauty ideals and social pressure. Instead, the culprit is a combination of genes and environment.

Tool use improves language skills

There is a correlation between the ability to understand complex syntax and the fine-motor skills required for manipulating tools, a study published in the journal *Science*, by researchers at Karolinska Institutet and the French research institute Inserm shows. The same cluster of neurons in the brain are involved in both skills. The study, which also shows that the use of tools improves language ability, and vice versa, may in the future offer new ways to treat patients with impaired language ability.

100

KI has a far-reaching collaboration with Makerere University in Uganda. This year, Makerere University celebrates 100 years as one of the most reputable universities in Africa. The anniversary is celebrated, among other things, with a KI delegation on site in Uganda.

New group of antibacterial molecules identified

Researchers at Karolinska Institutet, among others, have identified a new group of molecules that have an antibacterial effect against many antibiotic-resistant bacteria and that can easily be altered chemically. The study published in the journal *PNAS* and offers hope of new, effective antibiotics with fewer side effects.

Continuous skin-to-skin contact

Photo: Andreas Andersson, Nils Bergman

EU grant for safer chemical handling

Photo: Brian Strickland, Getty Images

Mapping the genes behind eating disorders

Photo: Photo: Andreas Andersson, Nils Bergman

Tool use improves language skills

Photo: Photographs © Science Photo Library

T cells continue to defend against omicron

The omicron variant can partly evade the antibody response provided by multiple doses of mRNA vaccine or infection with previous variants of the SARS-CoV-2 virus. However, memory T cells in previously mRNA-vaccinated or infected individuals still recognise omicron, according to a study led by Marcus Buggert at Karolinska Institutet, published in the journal *Nature Medicine*. The best T cell response was observed in vaccinated individuals, suggesting that booster shots not only protect against COVID-19 via induction of antibodies but also by boosting other parts of our immune system.
Every year, we must reward the very best we have on the table.

THOMAS PERLMANN
Secretary-General of the Nobel Assembly and professor of molecular developmental biology at Karolinska Institutet.

Each year in early October, in keeping with Alfred Nobel’s last will and testament, the Nobel laureates in Physics, Chemistry, Physiology or Medicine, Literature and Peace are announced – the first announcement being the Nobel Prize in Physiology or Medicine.

Once the Nobel Committee has carefully examined, analysed and reduced the hundreds of nominations submitted during the year, 50 researchers gather to vote in the Nobel Forum at Karolinska Institutet. All are professors at Karolinska Institutet and members of the Nobel Assembly, a body that is independent of the university to guarantee secrecy surrounding the prize. When the votes have been cast, the awarded discovery is announced.

“It is a big task,” says Thomas Perlmann. “In times when people question what is and isn’t true, many people find it particularly important with prizes that focus on scientific discoveries. So we must continue doing our meticulous work. Every year, we must reward the very best we have on the table.”

10 facts about the Nobel Prize in Physiology or Medicine

1. The prize sum was SEK 10 million prize in 2021 and can be shared by a maximum of three people.

2. The prices were established by Alfred Nobel’s last will and testament in 1895 and were first awarded in 1901.

3. The final vote is taken place just before the announcement of the laureate(s) on the first Monday in October every year. The decision cannot be appealed.

4. The building where the Nobel Assembly meets is called the Nobel Forum and is located at the Karolinska Institutet campus in Solna. The assembly chamber was designed specifically for its meetings.

5. The news is usually relayed to the laureate(s) just before the announcement is made.

6. After the week in October when the announcements are made, the process begins again, and invitations are sent out for the next round of nominations. Self-nomination is not permitted.

7. Only specially invited researchers may nominate candidates for the prize. They include former Nobel laureates and professors at medical faculties around the world.

8. The nominees remain confidential for 50 years.

9. No one has been awarded the Nobel Prize in Physiology or Medicine more than once.

10. The Nobel Prize award ceremony takes place at the Stockholm City Hall, Sweden, on 10 December – the anniversary of Alfred Nobel’s death. At the ceremony, the Nobel Prize in Physics, Chemistry, Physiology or Medicine, Literature and the prize in economic sciences are awarded to the Nobel Prize laureates. The Nobel Peace Prize is awarded in Oslo. In 2021, the award ceremony was streamed from the City Hall in Stockholm. The Nobel Prize laureates had received their medals and diplomas in their home countries due to the COVID-19 pandemic.

Nobel laureates from Karolinska Institutet

Of the eight Swedes to have been awarded the Nobel Prize in Physiology or Medicine, five were from Karolinska Institutet.

Hugo Theorell 1955 for his discoveries concerning the nature and mode of action of oxidation enzymes.

Ragnar Granit 1967 (shared) for the discoveries concerning the primary physiological and chemical visual processes in the eye.

Ulf von Euler 1970 (shared) for their discoveries concerning the humoral transmitters in the nerve terminals and the mechanism for their storage, release and inactivation.

Sune Bergström and Bengt Samuelsson 1982 (shared) for their discoveries concerning prostaglandins and related biologically active substances.

More Nobel laureates

In 2015, Tomas Lindahl was one of three outstanding researchers to be awarded the Nobel Prize in Chemistry, the selection for which is made by the Royal Swedish Academy of Science. Many of Tomas Lindahl’s groundbreaking discoveries were made in the 1970s in a basement laboratory at Karolinska Institutet. His achievements include demonstrating that DNA is not as stable as once thought and describing the mechanism by which a cell repairs damage to its genome.

In 1981 the Nobel Prize in Physiology or Medicine was awarded to Torsten Wiesel, Roger W. Sperry and David H. Hubel. Torsten Wiesel had studied medicine and begun his research career at Karolinska Institutet. His and David H. Hubel’s research at Harvard demonstrated how the brain images the world around it, and the ability of brain cells to adapt during development.
KI in numbers

A global, engaged and groundbreaking university

Collaborations with internationally leading education and research environments are necessary for the exchange of ideas, methods, and results that drive education and science forward. Karolinska Institutet’s international standing and influence is very much based on the extent to which its researchers and teachers establish collaborations and co-author articles within these environments. The numbers are from 2021 and comparative figures for 2020 are shown in parentheses, unless otherwise stated.

During the period 2019–2021, scientific articles were published together with researchers in approximately 180 different countries. The country with the most co-publications was the United States, closely followed by Great Britain and Germany.

70 %

SCIENTIFIC ARTICLES

CO-PUBLISHED WITH PARTIES OUTSIDE OF SWEDEN

7,322

SCIENTIFIC ARTICLES

Number of scientific articles in 2020 (6,832 in 2019)

1.6 Field-normalised citation score

The average value for EU’s 27 member states is 1.1 compared to 1.6 at KI (1.9)

34 %

INTERNATIONAL DOCTORAL STUDENTS

The proportion of newly admitted doctoral students from another country in 2020 (37 % in 2019)

806 teachers of which

93 % has a PhD

4,787

FULL TIME EQUIVALENT EMPLOYEES

(3,735)

FULL TIME EQUIVALENT STUDENTS

27 %

WOMEN

61 %

MEN

2,061

DOCTORAL STUDENTS

(2,113)

2,760

DOCTORAL DEGREES (PHD)

(2,528)

(340)

39 %

WOMEN

67 %

MEN

339

PROFESSORS

(327)

33 %

WOMEN

67 %

MEN

358

EXTERNAL RESEARCH GRANTS

4 SEK billion

(4.0)

1.6 Field-normalised citation score

The average value for EU’s 27 member states is 1.1 compared to 1.6 at KI (1.9)

70 %

SCIENTIFIC ARTICLES

CO-PUBLISHED WITH PARTIES OUTSIDE OF SWEDEN

6,560

DEGREES

73 %

WOMEN

27 %

MEN

2,061

DOCTORAL STUDENTS

(2,113)

2,760

DOCTORAL DEGREES (PHD)

(2,528)

(340)

39 %

WOMEN

61 %

MEN

339

PROFESSORS

(327)

33 %

WOMEN

67 %

MEN

358

EXTERNAL RESEARCH GRANTS

4 SEK billion

(4.0)

70 %

SCIENTIFIC ARTICLES

CO-PUBLISHED WITH PARTIES OUTSIDE OF SWEDEN

6,560

DEGREES

73 %

WOMEN

27 %

MEN

2,061

DOCTORAL STUDENTS

(2,113)

2,760

DOCTORAL DEGREES (PHD)

(2,528)

(340)

39 %

WOMEN

61 %

MEN

339

PROFESSORS

(327)

33 %

WOMEN

67 %

MEN

358

EXTERNAL RESEARCH GRANTS

4 SEK billion

(4.0)

7.6 SEK billion in revenue

84% RESEARCH
43% DIRECT GOVERNMENT FUNDING
16% EDUCATION
57% EXTERNAL FUNDING

Karolinska Institutet’s history in brief

1810 Karolinska Institutet (KI) is founded by King Karl XII on 13 December.
1813 As one of KI’s first professors, Jöns Jacob Berzelius lays the foundation of KI’s scientific orientation.
1874 KI is licensed to confer medical degrees.
1895 Alfred Nobel’s testament bequeaths KI the right to select the Nobel Prize in Physiology or Medicine.
1937 Nanna Svartz is appointed professor at KI, becoming Sweden’s first state-employed female professor.
1955 Hugo Theorell becomes KI’s first Nobel Laureate, receiving the Nobel Prize in Physiology or Medicine.
1957 KI is granted official status as a university, with a mission to “contribute to the improvement of human health through research, education and information”.
1960 KI celebrates its 100th anniversary.
1974 The Stockholm University of Health Sciences is incorporated into KI.
1997 KI celebrates its 200th anniversary.
1998 Education and research at KI continuously assess and adapt to the COVID-19 pandemic circumstances.
2010 Education and research at KI is conducted on two campuses: Campus Solna and Campus Flemingsberg, and through the healthcare sector in the Stockholm region.
2013 KI is licensed to confer medical degrees.
1874 KI is licensed to confer medical degrees.
1895 Alfred Nobel’s testament bequeaths KI the right to select the Nobel Prize in Physiology or Medicine.
1937 Nanna Svartz is appointed professor at KI, becoming Sweden’s first state-employed female professor.
1955 Hugo Theorell becomes KI’s first Nobel Laureate, receiving the Nobel Prize in Physiology or Medicine.
1957 KI is granted official status as a university, with a mission to “contribute to the improvement of human health through research, education and information”.
1960 KI celebrates its 100th anniversary.
1974 The Stockholm University of Health Sciences is incorporated into KI.
1997 KI celebrates its 200th anniversary.
1998 Education and research at KI is conducted on two campuses: Campus Solna and Campus Flemingsberg, and through the healthcare sector in the Stockholm region.
2010 Education and research at KI continuously assess and adapt to the COVID-19 pandemic circumstances.

TEN LARGEST EXTERNAL SOURCES OF FUNDING, TOTAL 2021
With comparative figures 2019-2020, SEK million, excluding asset management

<table>
<thead>
<tr>
<th>DONATION PURPOSE</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>CHANGE 2020-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Swedish Research Council</td>
<td>915</td>
<td>856</td>
<td>893</td>
<td>4%</td>
</tr>
<tr>
<td>European Union (EU)</td>
<td>225</td>
<td>269</td>
<td>296</td>
<td>13%</td>
</tr>
<tr>
<td>The Swedish Cancer Society</td>
<td>185</td>
<td>205</td>
<td>248</td>
<td>21%</td>
</tr>
<tr>
<td>The Wellenberg Foundations</td>
<td>183</td>
<td>229</td>
<td>246</td>
<td>7%</td>
</tr>
<tr>
<td>Forte</td>
<td>142</td>
<td>125</td>
<td>137</td>
<td>10%</td>
</tr>
<tr>
<td>The Swedish Childhood Cancer Fund</td>
<td>106</td>
<td>110</td>
<td>106</td>
<td>-4%</td>
</tr>
<tr>
<td>Region Stockholm</td>
<td>101</td>
<td>93</td>
<td>100</td>
<td>8%</td>
</tr>
<tr>
<td>Swedish Heart Lung Foundation</td>
<td>69</td>
<td>75</td>
<td>87</td>
<td>16%</td>
</tr>
<tr>
<td>Royal Institute of Technology (KTH)</td>
<td>77</td>
<td>80</td>
<td>82</td>
<td>2%</td>
</tr>
<tr>
<td>The Swedish Foundation for Strategic Research</td>
<td>109</td>
<td>84</td>
<td>65</td>
<td>-23%</td>
</tr>
<tr>
<td>Other</td>
<td>1,136</td>
<td>1,069</td>
<td>1,070</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>3,249</td>
<td>3,187</td>
<td>3,331</td>
<td>5%</td>
</tr>
</tbody>
</table>

SEK million in revenue from the EU
Including scholarships and other transfers

296 ongoing EU financed projects
(265)

206 ERC projects
At the end of 2021, KI participated in 41 European Research Council (ERC) projects (17)

1 university
2 campuses

SOLNA
FLEMINGSBERG

The numbers are from 2021 and comparative figures for 2020 are shown in parentheses, unless otherwise stated. Sources: Funding & tender opportunities portal, Cordis, Unit4 Business Word (UBW). Graphic: Noun Project.
Donations and gifts contribute valuable resources and allow scientists to try novel approaches to important research questions. A donation can also fund a long-term project or studies of previously untested ideas. In the spring of 2020, private funding made it possible for Karolinska Institutet to quickly start many of its COVID-19 research projects. Even smaller donations can help advance research. Gifts are always used in accordance with donors’ wishes. Donors often have a research field, or even a particular research group, in mind. If not, DO assists in finding suitable research projects and, in consultation with both the donor and recipient, draws up a deed of gift. If the donor wishes, an annual report is made describing how funds have been used.

Donations, funding and gifts from private individuals, foundations and companies are important to Karolinska Institutet’s ability to sustain the outstanding quality of its research.

GIFTS CAN HELP ADVANCE RESEARCH

Thanks to the endowment from the Hållsten Research Foundation, I’ve dared to take a holistic approach and broaden the competence within what was primarily a clinical genetics-oriented research group. I’ve now been able to recruit a doctoral student and experts in machine learning, epidemiology and psychology. Through the Hållsten Foundation, I have been able to start the UNIKA project in which researchers from a range of disciplines work together to map rare syndromes on the basis of everything from genetic mutations and cellular mechanisms to physical symptoms, behaviour and everyday lives.

In my research I apply meticulous clinical characterisation, modern sequencing techniques and functional studies to find new genes and common signal pathways of significance to cancer onset and fetal development. My ultimate goal is to offer individuals with previously undiagnosed or rare deformity syndromes – with or without intellectual impairment or autism – and children with cancer and their families an optimal diagnostic investigation and holistic care.

ANN NORDGREN
Adjunct professor of clinical genetics at the Department of Molecular Medicine and Surgery, Karolinska Institutet:

“I’ve dared to take a holistic approach in my research...”
KI ALUMNI

Former students, employees and researchers can maintain contact with Karolinska Institutet (KI) through the KI Alumni Network, with over 16,000 members around the world. Alumni are invited to events, seminars and get updates on KI’s latest news and developments.
Welcome to KI Alumni!
ki.se/en/alumni

Follow Karolinska Institutet:

- **WEBSITE** ki.se/en
- **LINKEDIN** school/karolinska-institutet
- **FACEBOOK** karolinskainstitutet
- **INSTAGRAM** karolinskainstitutet
- **TWITTER** @karolinskainst
- **YOUTUBE** karolinska institutet

Karolinska Institutet - A medical university

Production and design: Communications and Public Relations Office
Print: Arkitektkopia 2022
ISBN: 978-91-985482-3-5

The Neo research and education block on Campus Flemingsberg, Karolinska Institutet.
Photo: Erik Flyg
Karolinska Institutet (KI) is one of the world’s leading medical universities. Our vision is to advance knowledge about life and strive towards better health for all.

As a university, KI is Sweden’s single largest centre of medical academic research and offers the country’s widest range of medical courses and programmes.

Since 1901 the Nobel Assembly at Karolinska Institutet has selected the Nobel Laureates in Physiology or Medicine.