Skip to main content

Biophysics of stem cell and tissue growth

Research in our group aims for a deeper understanding of the factors that control self-renewal in stem cells.

Self-renewal is the capacity of a stem cell to maintain a stem cell identity while realizing its potential to differentiate. Self-renewal necessarily also entails maintained proliferative capacity. Understanding the factors that control proliferation is essential when developing regenerative therapies but also therapies against self-renewing tumor initiating cells (cancer stem cells) that underlie tumor relapse and metastasis.

We aim to identify factors that:

  • induce the transition from quiescence to active proliferation in stem cells to allow tissue repair/engineering
  • factors that protect stem cells during radio-/chemotherapy and
  • factors that target the proliferative and metastatic capacity in cancer stem cells.

To this end we explore how biophysical mechanisms, involving membrane potential and electrochemical signaling, affect stem cell behavior and morphology associated with growth, proliferation and migration. We furthermore explore how photobiological and biophysical tools (e.g. optogenetics, ion channels) may integrate with these functions and aim to identify potential downstream effects on the cell intrinsic molecular clock and on metabolism.

We work with an experimental systems biology approach reaching from pharmacology, small molecule screens and genetic validations in stem cells, cancer stem cells and mouse and zebrafish models, extending to genomics (RNAseq) and a range of biophysical methods.

Group members

Michael Andäng Research group leader
Cecilia Gardmo Associated
Helena Johard Associated
Petra Sekyrova Associated
Zuzana Sramkova Associated

Past group members:

Mia Niklasson, post-doc, present position senior researcher at Uppsala University.

Projects

1. Membrane potential and ion fluxes in control of:

  • 1.1 the cell cycle in embryonic stem cells (Shaimaa Abdelhady).
  • 1.2 the cell cycle in neural stem cells (Anna Omelyanenko, Fei Gao).
  • 1.3 cell proliferation in glioma tumors and glioma cancer stem cells (Shermaine Wee).
  • 1.4 embryo development (Petra Sekyrova).
  • 1.5 molecular clock oscillations (Anna Omelyanenko).

2 Cell cycle dependent gene expression - from transcription factors to ion channels - in:

  • 2.1 embryonic stem cells, induced pluripotent stem cells and cancer cells (Petra Sekyrova).
  • 2.2 neural stem cells.
  • 2.3 cancer stem cells (Shermaine Wee).
  • 2.4 interactions with Epithelial to Mesenchymal Transition in G2 cell cycle phase (Petra Sekyrova).

3. Light and magnetic field controlled gene expression and function:

  • 3.1 in control of basic biological mechanisms such as cell cycle and molecular clock oscillations (Petra Sekyrova, Anna Omelyanenko).
  • 3.2 reengineered to experimentally control gene expression (all members of the group).

Financial support

Publications

18185516

28087597

27375015

ZD7288, a blocker of the HCN channel family, increases doubling time of mouse embryonic stem cells and modulates differentiation outcomes in a context-dependent manner. Omelyanenko A, Sekyrova P, Andäng M. Springerplus. 2016 Jan 16;5:41.

25531110

24656405

23936540

22659342

22531632

21436033

Mouse embryonic stem cell-derived spheres with distinct neurogenic potentials. Moliner A, Enfors P, Ibáñez C, Andäng M.
Stem Cells Dev. 2008 Apr;17(2):233-43.

18185516

Contact us