Denna sida på svenska
Loading profile information...

About me

I am a molecular biologist backed by many years of work in the areas of developmental biology, neuroscience and stem cells. After finishing my degree in Barcelona, I moved to Milan, Italy, to the laboratory of Dr. Francesco Blasi to start a PhD in Biochemistry and Molecular Biology and co-supervised by Dr. Riaz Farookhi, at McGill University in Montreal, Canada, in the area of ​​developmental biology. In 2007, I moved to the Karolinska Institutet to work on stem cell research, in the laboratory of Professor Ernest Arenas, who was devoted to stem cell research for cell replacement therapies for the treatment of Parkinson's disease. Over the last years, I have moved into a new and fascinating area of ​​research to model psychiatric disorders such as bipolar disorder, schizophrenia and depression with patient-derived stem cells in the Center for Molecular Medicine (Karolinska University Hospital and Karolinska Institutet). My team, the Psychiatric Stem Cell Group, is part of the Neurogenetics Unit (Professor Martin Schalling). We have also started a scientific platform – OrganoidCellStem – for the generation of human organoids.

Education

Bachelor Degree in Biochemistry by the Universitat Autonoma of Barcelona.

PhD in Biochemistry and Molecular Biology under the supervision of Dr. Francesco Blasi (IFOM Institute, Milan, Italy) and Dr. Riaz Farookhi (McGill University, Montreal, Canada).

FEBS postdoctoral fellow in the group of Dr. Ernest Arenas (MBB Department, Karolinska Institutet).

Research description

Our main focus is to develop cellular models to study psychiatric disorders with patient-derived stem cells and organoids.

 

PSYCHIATRIC STEM CELL GROUP

Our multidisciplinary team together with our collaborators has a solid background in neurobiology, psychiatric disorders, human embryonic stem cells and patient-derived stem cells (iPSC), and cell replacement therapies for neuroregeneration.

It is quite challenging to obtain live neurons from patients affected by psychiatric disorders. Our group is using human cell-based models to generate nearly limitless quantities of live patient-derived mature neurons to identify cellular and molecular changes associated to psychiatric disorders. The patient-derived iPSCs and subsequently in vitro differentiation into neurons provide the opportunity to study enough patient-derived materials to identify neuronal alterations and to develop novel therapeutic approaches.

Bipolar Disorder is characterized by recurrent episodes of depression and mania that causes unusual shifts in mood and results in damaged social relationships and poor job performance. Unfortunately, suicide is a leading cause of death in patient with bipolar disorder. Our group is developing a translational project merging clinical and basic research and disease modeling by patient-derived iPSCs to identify novel biomarkers to predict the success of pharmacological treatments for bipolar disorder. The molecular mechanism related to lithium response is one of our main focuses.

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common childhood disorders. Symptoms include difficulty staying focused and paying attention, difficulty controlling behavior, and hyperactivity. Our group is developing cellular models to identify cellular and molecular phenotypes to understand the origin and progression of ADHD, and to study the brain-gut axis.

 

CMM-OrganoidCellStem

The Center for Molecular Medicine Stem Cell & Organoid Core Facility (CMM-OrganoidCellStem) is located at CMM, Karolinska University Hospital, with the aim to accelerate research in the clinical applications of human stem cells by facilitating the generation and distribution of human pluripotent stem cells (hPSC), derived cells and organoids.

Our facility offers the possibility of differentiate hPSC into different types of derived cells of the mesoderm, ectoderm and endoderm lineages. Our main focus is the production of organoids to advances translational research. Organoid models include three dimensional cell culture systems that closely resemble the in vivo organ or tissue. Organoids reproduce the complex spatial morphology of a tissue including relevant cell-cell and cell-matrix interactions. This is in contrast to traditional two dimensional cell culture models.

 

GROUP MEMBERS:

Karol Kaiser (PhD student)

Vincent Millischer (PhD student)

Parvin Kumar (PhD student)

Paschalis Efstathopoulos (Postdoc)

 

collaborators:

Dr. Martin Schalling, CMM, Karolinska Institute, Stockholm, Sweden.

Dr. Roger Barker, CBR Institute, University of Cambridge, UK. 

Dr. Licia Celery, Cornell University, New York, USA.

Dr. David Hicks, the Department of Neurobiology of Rhythms, için, Strasbourg, France.

Dr. Elizabeth Villela, Psychiatric Hospital Pere Mata, Rovira i Virgili University, Reus, Spain.

Dr. Anna Falk, Neuroscience Department, Karolinska Institute, Stockholm, Sweden.

Dr. Tibor Harkany, Center for Brain Research, Medical University of Vienna, Austria.

 

Links

Loading publication list...