Gene often lost in childhood cancer crucial in cells' life or death decision

Published 2016-01-26 10:19. Updated 2016-01-26 10:44

A gene that is often lost in childhood cancer plays an important role in the decision between life and death of certain cells, according to a new study published in the journal Developmental Cell. Researchers at Karolinska Institutet and Ludwig Cancer Research in Sweden have discovered the process by which that gene, KIF1B-β, kills cells and thereby suppresses tumour development.

Neuroblastoma is the third most common type of tumour in children. Its aggressive nature and the frequency of metastatic disease at diagnosis contribute to the fact that neuroblastoma accounts for almost 15 per cent of childhood cancer fatalities. For the past two decades a region on chromosome 1 that is often missing in neuroblastoma cells has been thought to harbour an important tumour suppressor gene.

"Our data strongly suggest that KIF1Bβ, which is localised on chromosome 1p36, might be such a neuroblastoma tumour suppressor gene", says principal investigator Susanne Schlisio at the Department of Microbiology, Tumor and Cell Biology (Marie Arsenian Henriksson Group) at Karolinska Institutet and Assistant Member at the Ludwig Institute for Cancer Research in Stockholm, Sweden.

Neuroblastoma tumours originate from the same transient progenitor cells—neural crest cells—that give rise to the nervous system along with other tissues. Members of some families are at higher risk than others to develop tumours that originate from these cells due to mutations in specific genes. The research team behind the new study previously discovered that genes mutated in some of the tumours play a central role in determining whether neural crest cells live or die. Neural crest cells that should ordinarily have succumbed to programmed cell death escape that fate when KIF1B-β is lost. Later in life, the cells might develop into cancer cells.

Read More Here

Marie Arsenian Henriksson Group

Cancer and Oncology