Team Per Eriksson

Transatlantic Networks of Excellence in Cardiovascular and Neurovascular Research -- MIBAVA -- Mechanistic interrogation of bicuspid aortic valve aortopathy

Research focus

Molecular pathology of aortic aneurysm, allele-specific gene expression


The long-term interest of the Eriksson team is to investigate the underlying molecular mechanism of aortic aneurysm development. Aortic aneurysms are characterized by a degradation of the extra cellular matrix leading to a dilatation and eventually rupture of the vessel wall. The disease involves loss of elastin and remodeling of collagen, which are load bearing components of the vessel wall.

Major research focus

One of our main goals is to understand the underlying mechanism of the common aortopathy associated with a bicuspid aortic valve (BAV).  BAV is the most common congenital disorder of the aortic valve and is present in 1-2 % of the population. The presence of a BAV predisposes for progressive dilatation of the ascending aorta and thereby constitutes an increased risk of aortic aneurysm that may eventually lead to fatal rupture or dissection of the aorta. The prevalence of aortic dilatation in patients with BAV has been estimated to be as high as 50-70%. As yet, the pathophysiologic basis for the increased risk of aortic complications associated with BAV is not known.

Currently, two major hypotheses have been proposed to explain the more fragile aorta in BAV patients. The first is that a developmental abnormality or a genetic predisposition in BAV results in structural weakness of the aorta, which renders it more susceptible to aortic complications. The second or ‘’hemodynamic’’ theory argues that the chronic exposure of ascending aortic wall to higher blood flow velocities and eccentric flow jets due to the geometry of a BAV lead to a higher propensity of the BAV aorta to aorthopathy . Recently, an increasing number of researchers agree that both factors may contribute to BAV related cardiac complications.

Our research team’s goal is to understand how different signaling pathways interact to bring about the similarities and differences in molecular events of aneurysm formation in patients with BAV and patients with a normal tricuspid aortic valve (TAV). Besides inherited properties, we also study the possible dysregulation of biological pathways due to abnormal hemodynamic stress, which may contribute and/or lay the foundation for more fragility in BAV aorta. In order to do so, we integrate the core molecular biology with genomic, genetic and bioinformatics analysis. Importantly, we have collected large and well characterized unique biobank, including tissue biopsies from dilated and non-dilated aorta in addition to DNA, plasma and serum samples. Candidate genes and pathways are initially identified by transcriptomics, proteomics, epigenomics and genetic analyses. Functional evaluations are performed using cell culture and in vitro analyses. RNA sequencing is used to study allele-specific gene expression.


Affiliated to the team are Sanela Kjellqvist, PhD, SciLife lab, proteomics and Lasse Folkersen, PhD, Novo Nordisk, genomics.

The study on BAV associated aortopathy is a close collaboration with the group of Professor Anders Franco-Cereceda at the Cardiothoracic Surgery Unit at the Karolinska University Hospital Solna. Studies on abdominal aortic aneurysm are in collaborations with Docent Joy Roy and Docent Rebecka Hultgren at the Vascular Surgery group, Karolinska University Hospital Solna.  

We are member of Leducq transatlantic network on BAV disease (MIBAVA). The studies are supported by the Swedish Research Council and the Swedish Heart-Lung Foundation.

PE was co-coordinator of the EU-financed European collaboration called Fighting Aneurysmal Disease.

Team members

Per Eriksson PhD, Professor, Group Leader

Shohreh Maleki PhD, Research Assistant Professor

Valentina Paloschi PhD, Post Doctoral Fellow

Karin Lundströmer Laboratory assistant  

Jesper Gådin PhD Student

Hanna Björck PhD, Post Doctoral Fellow

Lei Du PhD, Post Doctoral Fellow

Anirban Bhattachariya, PhD, Post Doctoral Fellow

Recent key publications

Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease.
Folkersen L, van't Hooft F, Chernogubova E, Agardh H, Hansson G, Hedin U, et al
Circ Cardiovasc Genet 2010 Aug;3(4):365-73

Genome-wide association study identifies a sequence variant within the DAB2IP gene conferring susceptibility to abdominal aortic aneurysm.
Gretarsdottir S, Baas A, Thorleifsson G, Holm H, den Heijer M, de Vries J, et al
Nat. Genet. 2010 Aug;42(8):692-7

Increased expression of leukotriene C4 synthase and predominant formation of cysteinyl-leukotrienes in human abdominal aortic aneurysm.
Di Gennaro A, Wågsäter D, Mäyränpää M, Gabrielsen A, Swedenborg J, Hamsten A, et al
Proc. Natl. Acad. Sci. U.S.A. 2010 Dec;107(49):21093-7

A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease.

Nat. Genet. 2011 Mar;43(4):339-44

Diverging alternative splicing fingerprints in the transforming growth factor-β signaling pathway identified in thoracic aortic aneurysms.
Kurtovic S, Paloschi V, Folkersen L, Gottfries J, Franco-Cereceda A, Eriksson P
Mol. Med. 2011 ;17(7-8):665-75

Impaired splicing of fibronectin is associated with thoracic aortic aneurysm formation in patients with bicuspid aortic valve.
Paloschi V, Kurtovic S, Folkersen L, Gomez D, Wågsäter D, Roy J, et al
Arterioscler. Thromb. Vasc. Biol. 2011 Mar;31(3):691-7

Unraveling divergent gene expression profiles in bicuspid and tricuspid aortic valve patients with thoracic aortic dilatation: the ASAP study.
Folkersen L, Wågsäter D, Paloschi V, Jackson V, Petrini J, Kurtovic S, et al
Mol. Med. 2011 ;17(11-12):1365-73

Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1.
Bown M, Jones G, Harrison S, Wright B, Bumpstead S, Baas A, et al
Am. J. Hum. Genet. 2011 Nov;89(5):619-27

Identification of a novel flow-mediated gene expression signature in patients with bicuspid aortic valve.
Maleki S, Björck H, Folkersen L, Nilsson R, Renner J, Caidahl K, et al
J. Mol. Med. 2013 Jan;91(1):129-39

Characterization of shear-sensitive genes in the normal rat aorta identifies Hand2 as a major flow-responsive transcription factor.
Björck H, Renner J, Maleki S, Nilsson S, Kihlberg J, Folkersen L, et al
PLoS ONE 2012 ;7(12):e52227

Quest for genes and mechanisms linking the human chromosome 9p21.3 locus to cardiovascular disease.
Hamsten A, Eriksson P
Circulation 2012 Oct;126(15):1815-7

A combined proteomic and transcriptomic approach shows diverging molecular mechanisms in thoracic aortic aneurysm development in patients with tricuspid- and bicuspid aortic valve.
Kjellqvist S, Maleki S, Olsson T, Chwastyniak M, Branca R, Lehtiö J, et al
Mol. Cell Proteomics 2013 Feb;12(2):407-25

Impaired collagen biosynthesis and cross-linking in aorta of patients with bicuspid aortic valve.
Wågsäter D, Paloschi V, Hanemaaijer R, Hultenby K, Bank R, Franco-Cereceda A, et al
J Am Heart Assoc 2013 Feb;2(1):e000034

Valvular osteoclasts in calcification and aortic valve stenosis severity.
Nagy E, Eriksson P, Yousry M, Caidahl K, Ingelsson E, Hansson G, et al
Int. J. Cardiol. 2013 Oct;168(3):2264-71

Secretory phospholipase A(2)-IIA and cardiovascular disease: a mendelian randomization study.
Holmes M, Simon T, Exeter H, Folkersen L, Asselbergs F, Guardiola M, et al
J. Am. Coll. Cardiol. 2013 Nov;62(21):1966-76

A variant in LDLR is associated with abdominal aortic aneurysm.
Bradley D, Hughes A, Badger S, Jones G, Harrison S, Wright B, et al
Circ Cardiovasc Genet 2013 Oct;6(5):498-504